首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The effect of surface ultrasonic treatment on plastic deformation and mechanical properties of polycrystalline titanium and low-carbon steel specimens under tension was studied. The deformation pattern was investigated using optical, transmission electron, scanning electron and scanning tunneling microscopy. It was shown that the material within hardened surface layers is characterized by ultrafine-grained structure. This structure results in plastic flow localization at different scale levels. Localized deformation meso-bands induce weak work hardening of the material. Plastic flow macro-localization causes a drop of the external deforming stress. The peculiar mechanisms of deformation localization within the specimen surface layer govern formation of a banded dislocation substructure in the bulk of the specimen.  相似文献   

2.
粉末烧结钨合金材料的绝热剪切研究   总被引:1,自引:0,他引:1  
在分离式霍普金森压杆装置上对斜圆柱粉末烧结钨合金试件进行了冲击实验,由于斜圆柱结构中剪切分量在冲击压缩中的持续作用,实验中观察到了宏观破断现象。利用光学显微镜和扫描电子显微镜分别对试件断面和试件的纵截面进行了分析,观察到了贯通钨颗粒的绝热剪切带这一变形局部化现象。对粉末烧结钨合金绝热剪切破坏机制进行了分析。  相似文献   

3.
A model of evolving martensitic microstructures is formulated that incorporates the interfacial energy and dissipation on three different scales corresponding to the grain boundaries attained by martensite plates, the interfaces between austenite and martensite plates, and the twin interfaces within martensite plates. Three different time scales are also considered in order to clarify the meaning of rate-independent dissipation related to instabilities at more refined temporal and spatial scales. On the slowest time scale, the process of deformation and martensitic phase transformation is investigated as being composed of segments of smooth quasi-static evolution separated by sudden jumps associated with creation or annihilation of interfaces. A general evolution rule is used in the form of minimization of the incremental energy supply to the whole compound thermodynamic system, including the rate-independent dissipation. Close relationship is shown between the evolution rule and the thermodynamic condition for stability of equilibrium, with no a priori assumption on convexity of the dissipation function. It is demonstrated that the extension of the minimum principle from the first-order rates to small but finite increments requires a separate symmetry restriction imposed on the state derivative of the dissipation function. Formulae for the dissipation associated with annihilation of interfaces are proposed that exhibit limited path-independence and satisfy that symmetry requirement. By exploiting the incremental energy minimization rule with the help of the transport theorems, local propagation conditions are derived for both planar and curved phase transformation fronts. The theory serves as a basis for the algorithm for calculation of the stress-induced evolution of martensitic microstructures along with their characteristic dimensions and related hysteresis loops in shape memory alloys; the examples are given in Part II of the paper.  相似文献   

4.
We studied the deformation of a series of gold/polysilicon patterned plate microstructures fabricated by surface micromachining. The patterned plate microstructures were subjected to a uniform temperature change from 100 °C to room temperature that was intended to induce linear and geometrically nonlinear deformation. We used interferometry to measure full-field deformed shapes of the microstructures. From these measurements we determined the spatially-averaged curvature of the deformed microstructures within individual lines and across the entire plate. The deformation response of the patterned plates can be broadly characterized in terms of the average curvature as a function of temperature change and exhibits linear and geometrically nonlinear behavior. We modeled the deformation response of the patterned plates using geometrically nonlinear plate theory with the finite element method. Good agreement was obtained between predictions and measurements for both local curvature variations across lines and for the evolution of curvature of the entire plate with temperature change. Using a generalized plane strain approach with the finite element method we also modeled the spatial dependence of the stress distribution in the lines and substrate. For thick plates, our results agree with those of previous studies, showing a decrease in the von Mises stress in the metal lines with decreasing linewidth. For thinner substrates, though, we find the behavior with linewidth is opposite and there is a critical substrate thickness (about 10 μm for the system in our study) where the behavior with linewidth changes. These results have important implications in the design of patterned structures for micro-electro-mechanical systems (MEMS) applications where films are of comparable thickness to the underlying substrate.  相似文献   

5.
随机缺陷对蜂窝结构动态行为影响的有限元分析   总被引:5,自引:0,他引:5  
通过对胞壁随机移除的蜂窝结构动态变形过程的有限元模拟,分析了随机缺陷对蜂窝结构变形模式的影响,得到蜂窝结构在两个加载方向上的变形模式图及不同模式间转换的临界速度. 对含缺陷蜂窝结构平台应力的研究发现,当变形模式为过渡模式或动态模式时结构平台应力与冲击速度的平方成线性关系. 相同密度下,低缺陷蜂窝结构的平台应力在由过渡模式向动态模式转变的临界速度附近高于规则蜂窝结构,较高的随机缺陷则使蜂窝结构的平台应力在由准静态模式向过渡模式转变的临界速度附近显著下降.关键词:多孔材料,蜂窝,缺陷,平台应力,有限元分析   相似文献   

6.
通过对胞壁随机移除的蜂窝结构动态变形过程的有限元模拟,分析了随机缺陷对蜂窝 结构变形模式的影响,得到蜂窝结构在两个加载方向上的变形模式图及不同模式间转换的临 界速度. 对含缺陷蜂窝结构平台应力的研究发现,当变形模式为过渡模式或动态模式时结构 平台应力与冲击速度的平方成线性关系. 相同密度下,低缺陷蜂窝结构的平台应力在由过渡 模式向动态模式转变的临界速度附近高于规则蜂窝结构,较高的随机缺陷则使蜂窝结构的平 台应力在由准静态模式向过渡模式转变的临界速度附近显著下降. 关键词:多孔材料,蜂窝,缺陷,平台应力,有限元分析  相似文献   

7.
Xie  H.  Wang  Z.  Liang  J.  Li  X. 《Experimental Mechanics》2020,60(8):1079-1101
Background

Images from scanning electron microscopes, transmission electron microscopes and atomic force microscopes have been widely used in digital image correlation methods to obtain accurate full-field deformation profiles of tested objects and investigate the object’s deformation mechanism. However, because of the raster-scanning imaging mode used in microscopic observation equipment, the images obtained from these instruments can only be used for quasi-static displacement measurements; otherwise, spurious displacements and strains may be introduced into the deformation results if these scanning microscopic images are used directly in general digital image correlation calculations for moving and temporally deformed surfaces.

Objective

Realizing kinematic parameter and dynamic deformation measurements on a scanning electron microscope platform.

Methods

Establishing a scanning imaging model of moving and temporally deformed objects that contains motion and deformation equations, a scanning equation and an intensity invariance assumption for small deformations. Then proposing a scanning-digital image correlation (S-DIC) method based on combing the characteristics of the scanning imaging mode with digital image correlation.

Results

Quantitatively investigating the effects of the spurious displacements and strains introduced when using scanning images to represent moving and temporally deformed surfaces in the measurement results. Numerical simulations verify that the accuracy of the S-DIC method is 10?2pix for the displacement, 10?4 for the strain, 10?4pix/s for the velocity and 10?6s?1 for the strain rate. Experiments also show that the proposed S-DIC method is effective. Conclusions: The results of this work demonstrate the utility of S-DIC on the field of microscopic dynamic measurement.

  相似文献   

8.
Small-scale deformation phenomena such as subgrain formation, development of texture, and grain boundary sliding require simulations with a high degree of spatial resolution. When we consider finite-element simulation of metal deformation, this equates to thousands or hundreds of thousands of finite elements. Simulations of the dynamic deformations of metal samples require elastic–plastic constitutive updates of the material behavior to be performed over a small time step between updates, as dictated by the Courant condition. Further, numerical integration of physically-based equations is inherently sensitive to the step in time taken; they return different predictions as the time step is reduced, eventually approaching a stationary solution. Depending on the deformation conditions, this converged time step becomes short (10−9 s or less). If an implicit constitutive update is applied to this class of simulation, the benefit of the implicit update (i.e., the ability to evaluate over a relatively large time step) is negated, and the integration is prohibitively slow. The present work recasts an implicit update algorithm into an explicit form, for which each update step is five to six times faster, and the compute time required for a plastic update approaches that needed for a fully-elastic update. For dynamic loading conditions, the explicit model is found to perform an entire simulation up to 50 times faster than the implicit model. The performance of the explicit model is enhanced by adding a subcycling algorithm to the explicit model, by which the maximum time step between constitutive updates is increased an order of magnitude. These model improvements do not significantly change the predictions of the model from the implicit form, and provide overall computation times significantly faster than the implicit form over finite-element meshes. These modifications are also applied to polycrystals via Taylor averaging, where we also see improved model performance.  相似文献   

9.
In general, finite plastic deformation is accompanied by microstructural material property changes such as texture change and growth of localized slip bands. However, it is very difficult to evaluate these microstructural material property changes nondestructively by means of the usual methods used to date. The ultrasonic nondestructive evaluation method proposed by the author has been successfully applied to the evaluation of plastically deformed state. The purpose of the present paper is to formulate precisely a generalized acoustoelastic theory for plastically deformed solids with finite plastic deformation and, moreover, to provide a method of nondestructive evaluation of the plastically deformed state, i.e. yield surface, texture change and the occurrence of the instability associated with the microslip band.  相似文献   

10.
弹性模量和内耗是固体材料的基本力学性质, 其测量的准确性和便捷性对工业生产和科学研究都很重要. 本文回顾了近一百年来固体材料弹性模量和内耗的测量方法, 主要分为四类: 准静态方法、低频法、共振法和波传播法. 首先对每类方法的测量原理进行了简单介绍及总体评价. 接着对几种共振方法, 包括自由梁共振法、脉冲激励法、超声共振谱方法和压电超声复合振动技术(PUCOT)进行了详细介绍和评价. 然后, 重点介绍了本课题组最新提出的基于机电阻抗的模量内耗测量方法(称之为M-PUCOT或Q-EMI), 它可以同时、准确、快速地测量杨氏/剪切模量及相应内耗. 最后, 对这种新型弹性模量/内耗测量方法的意义和应用前景进行了讨论和展望.   相似文献   

11.
In this work, a single crystal constitutive law for multiple slip and twinning modes in single phase hcp materials is developed. For each slip mode, a dislocation population is evolved explicitly as a function of temperature and strain rate through thermally-activated recovery and debris formation and the associated hardening includes stage IV. A stress-based hardening law for twin activation accounts for temperature effects through its interaction with slip dislocations. For model validation against macroscopic measurement, this single crystal law is implemented into a visco-plastic-self-consistent (VPSC) polycrystal model which accounts for texture evolution and contains a subgrain micromechanical model for twin reorientation and morphology. Slip and twinning dislocations interact with the twin boundaries through a directional Hall–Petch mechanism. The model is adjusted to predict the plastic anisotropy of clock-rolled pure Zr for three different deformation paths and at four temperatures ranging from 76 K to 450 K (at a quasi-static rate of 10−3 1/s). The model captures the transition from slip-dominated to twinning-dominated deformation as temperature decreases, and identifies microstructural mechanisms, such as twin nucleation and twin–slip interactions, where future characterization is needed.  相似文献   

12.
Grating techniques are used to determine the three-dimensional deformation and the tangential strain of sheet metal. A grating is fixed on the surface and taken by stereo CCD cameras in different deformation states. By suitable line-following software, the grating coordinates in the images are determined with subpixel accuracy. Using photogrammetric methods, the three-dimensional coordinates are calculated from the image coordinates. The strain usually is determined by means of a deformation gradient, which is calculated from every deformed triangle. In this paper, the gradient is determined in the center of four neighboring meshes using a polynomial approximation of the displacement function in a reference position. The influence of the nontangential deformation is considered. By simulation, a flat sheet metal is deformed to a rotational symmetric surface. The difference of the known exact strain is compared with the numerically derived strain with respect to different grating pitches. The proposed method yields good results even in the case of large spatial deformation. It is applied to the deformation of a hatlike test specimen.  相似文献   

13.
Shape change of metal systems generates deformed microstructures of dislocation arrays that are comprised of walls of high density separating low density cells. The flow stresses of these composite structures are equilibrated by an evolving internal stress due to the blockage of dislocation passage resulting in kinematic hardening in the meso-scale. The method of intra-granular backstress of Eshelby using Kröner based approach in closed form formulae can easily be incorporated into a crystal-plasticity-based model to predict the kinematic hardening. We have previously developed finite element analyses based on the rate dependent crystal plasticity theory, which can incorporate electron backscatter diffraction (EBSD) maps. We will use this model with inclusion of the calculated backstress to investigate the effect of changes in strain paths.  相似文献   

14.
Superelastic deformation of thin Ni-Ti wires containing various nanograined microstructures was investigated by tensile cyclic loading with in situ evaluation of electric resistivity. Defects created by the superelastic cycling in these wires were analyzed by transmission electron microscopy. The role of dislocation slip in superelastic deformation is discussed. Ni-Ti wires having finest microstructures (grain diameter <100 nm) are highly resistant against dislocation slip, while those with fully recrystallized microstructure and grain size exceeding 200 nm are prone to dislocation slip. The density of the observed dislocation defects increases significantly with increasing grain size. The upper plateau stress of the superelastic stress-strain curves is largely grain size independent from 10 up to 1000 nm. It is hence claimed that the Hall-Petch relationship fails for the stress-induced martensitic transformation in this grain size range. It is proposed that dislocation slip taking place during superelastic cycling is responsible for the accumulated irreversible strains, cyclic instability and degradation of functional properties. No residual martensite phase was found in the microstructures of superelastically cycled wires by TEM and results of the in situ electric resistance measurements during straining also indirectly suggest that none or very little martensite phase remains in the studied cycled superelastic wires after unloading. The accumulation of dislocation defects, however, does not prevent the superelasticity. It only affects the shape of the stress-strain response, makes it unstable upon cycling and changes the deformation mode from localized to homogeneous. The activity of dislocation slip during superelastic deformation of Ni-Ti increases with increasing test temperature and ultimately destroys the superelasticity as the plateau stress approaches the yield stress for slip. Deformation twins in the austenite phase ({1 1 4} compound twins) were frequently found in cycled wires having largest grain size. It is proposed that they formed in the highly deformed B19′ martensite phase during forward loading and are retained in austenite after unloading. Such twinning would represent an additional deformation mechanism of Ni-Ti yielding residual irrecoverable strains.  相似文献   

15.
This paper develops analytical electromechanical formulas to predict the mechanical deformation of ionic polymer–metal composite(IPMC) cantilever actuators under DC excitation voltages. In this research, IPMC samples with Pt and Ag electrodes were manufactured, and the large nonlinear deformation and the effect of curvature on surface electrode resistance of the IPMC samples were investigated experimentally and theoretically. A distributed electrical model was modified for calculating the distribution of voltage along the bending actuator. Then an irreversible thermodynamic model that could predict the curvature of a unit part of an IPMC actuator is combined with the electrical model so that an analytical electromechanical model is developed. The electromechanical model is then validated against the experimental results obtained from Pt-and Ag-IPMC actuators under various excitation voltages. The good agreement between the electromechanical model and the actuators shows that the analytical electromechanical model can accurately describe the large nonlinear quasi-static deflection behavior of IPMC actuators.  相似文献   

16.
朱潋  何为  吴军 《实验力学》2014,29(1):26-32
弹性介质在受到外力的情况下会发生弹性形变。在弹性介质质量一定的情况下,此弹性形变会使弹性介质的体积和密度伴随着改变。对于超声波而言,在除了弹性介质本身的其他因素不变的情况下,弹性介质体积和密度的改变将会影响到超声波的传播特性。通过理论分析得出超声波幅值和相位随弹性琼脂应力变化的关系。以琼脂作为实验模型,检测琼脂在形变时超声波的信号参数,并且通过实验数据,最终得到二者的曲线和标定公式。此结果有利于今后在介质应力检测及超声波检测技术等方面的深入研究。  相似文献   

17.
蔡盛强  汪洋  夏源明 《实验力学》2007,22(2):97-103
本文介绍了不同温度下多晶纯钛试件的单调拉伸、压缩试验和不同应变的压缩加卸载试验及其结果,同时介绍了拉断试样以及不同压缩应变下卸载试样的金相观察结果。通过直接比较不同温度下多晶纯钛的单调拉伸、压缩试验结果以及相应的金相分析,得到了由孪晶单独引起的流动应力的增加与应变之间的定量关系。本文还根据Hall-Petch关系和孪晶体积分数的演化方程,建立了孪晶引起的流动应力的增加与应变之间的唯象解析关系。试验结果表明此唯象关系较好地描述了孪晶对多晶纯钛塑性变形的影响。  相似文献   

18.
本文研究了各向同性固体的化学-力学耦合问题,在传统化学弹性理论描述的扩散-变形耦合关系基础上,进一步考虑了化学反应与固体变形的相互作用关系,发展了等温状态下固体-扩散-反应-变形耦合的线性化学弹性理论,拓展了化学弹性力学的应用范围.该理论能够同时描述固体内介质扩散和固体与介质之间化学反应两个不同时间尺度的化学过程,并给出由此引起的弹性范围内的应变和应力.为应用该模型求解具体化学弹性问题,本文通过构造扩散-反应位移势函数来获得位移特解形式,再与齐次Lamé方程通解叠加获得完整解;针对反应控制问题,引入化学弹性准静态假设,将反应-扩散-变形全耦合的瞬态过程分解为两个可解耦的相继过程,从而获得相应位移解.基于此解法,本文获得了反应控制的双层球壳结构化学弹性问题的解析解,并分析了化学反应、几何结构和弹性模量对应力分布的影响.  相似文献   

19.
Investigated in this work is the plastic deformation of representative mesovolumes of the steel 65Cr13 samples. They were surface-hardened by ion nitriding. An evolution of inner structure and stress–strain state in the mesovolumes with different thickness of surface-hardened layer was analyzed under tension and compression. A site of the working part of a cross-section of the sample was examined in the area of neck formation. To simulate the two-dimensional behavior of the deformed steel samples, two formulations are given. They include the strain hardening effects and crack formation. The results are presented and discussed.  相似文献   

20.
研究多孔材料细观结构与宏观力学性能之间的关系, 建立具有固定相对密度的含随机固体填充孔的圆形蜂窝结构模型。在此模型的基础上具体讨论了不同孔洞填充比和冲击速度对圆形蜂窝结构变形模式、动态冲击平台应力以及能量吸收性能的影响。研究结果表明:填充孔在蜂窝变形过程中有局部牵制作用, 蜂窝材料变形模式仍为准静态模式、过渡模式、动态模式; 当变形模式为过渡模式或动态模式时, 结构的平台应力与速度的平方成线性关系, 存在明显的速度效应; 高速冲击下, 含固体填充孔的蜂窝结构单位质量吸收的能量高于规则蜂窝结构。研究结果可为蜂窝材料的研究和设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号