首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The monotonic and cyclic mechanical behavior of O-temper AZ31B Mg sheet was measured in large-strain tension/compression and simple shear. Metallography, acoustic emission (AE), and texture measurements revealed twinning during in-plane compression and untwinning upon subsequent tension, producing asymmetric yield and hardening evolution. A working model of deformation mechanisms consistent with the results and with the literature was constructed on the basis of predominantly basal slip for initial tension, twinning for initial compression, and untwinning for tension following compression. The activation stress for twinning is larger than that for untwinning, presumably because of the need for nucleation. Increased accumulated hardening increases the twin nucleation stress, but has little effect on the untwinning stress. Multiple-cycle deformation tends to saturate, with larger strain cycles saturating more slowly. A novel analysis based on saturated cycling was used to estimate the relative magnitude of hardening effects related to twinning. For a 4% strain range, the obstacle strength of twins to slip is 3 MPa, approximately 1/3 the magnitude of textural hardening caused by twin formation (10 MPa). The difference in activation stress of twinning versus untwinning (11 MPa) is of the same magnitude as textural hardening.  相似文献   

2.
The relationships between a slip system in the parent lattice and its transform by twinning shear are considered in regards to tangential continuity conditions on the plastic distortion rate at twin/parent interface. These conditions are required at coherent interfaces like twin boundaries, which can be assigned zero surface-dislocation content. For two adjacent crystals undergoing single slip, relations between plastic slip rates, slip directions and glide planes are accordingly deduced. The fulfillment of these conditions is investigated in hexagonal lattices at the onset of twinning in a single slip deforming parent crystal. It is found that combinations of slip system and twin variant verifying the tangential continuity of the plastic distortion rate always exist. In all cases, the Burgers vector belongs to the interface. Certain twin modes are only admissible when slip occurs along an 〈a〉 direction of the hexagonal lattice, and some others only with a 〈c + a〉 slip. These predictions are in agreement with EBSD orientation measurements in commercially pure Ti sheets after plane strain compression.  相似文献   

3.
Uniaxial tension and compression experiments on [0 0 1] and [0 1 1] oriented molybdenum nano-pillars exhibit tension-compression asymmetry, a difference in attained stresses in compression vs. tension, which is found to depend on crystallographic orientation and sample size. We find that (1) flow stresses become higher at smaller diameters in both orientations and both loading directions, (2) compressive flow stresses are higher than tensile ones in [0 0 1] orientation, and visa versa in [0 1 1] orientation, and (3) this tension-compression asymmetry is in itself size dependent. We attribute these phenomena to the dependence of twinning vs. antitwinning deformation on loading direction, to the non-planarity of screw dislocation cores in Mo crystals, and to the possibly lesser role of screw dislocations in governing nano-scale plasticity compared with bulk Mo.  相似文献   

4.
In this work, a single crystal constitutive law for multiple slip and twinning modes in single phase hcp materials is developed. For each slip mode, a dislocation population is evolved explicitly as a function of temperature and strain rate through thermally-activated recovery and debris formation and the associated hardening includes stage IV. A stress-based hardening law for twin activation accounts for temperature effects through its interaction with slip dislocations. For model validation against macroscopic measurement, this single crystal law is implemented into a visco-plastic-self-consistent (VPSC) polycrystal model which accounts for texture evolution and contains a subgrain micromechanical model for twin reorientation and morphology. Slip and twinning dislocations interact with the twin boundaries through a directional Hall–Petch mechanism. The model is adjusted to predict the plastic anisotropy of clock-rolled pure Zr for three different deformation paths and at four temperatures ranging from 76 K to 450 K (at a quasi-static rate of 10−3 1/s). The model captures the transition from slip-dominated to twinning-dominated deformation as temperature decreases, and identifies microstructural mechanisms, such as twin nucleation and twin–slip interactions, where future characterization is needed.  相似文献   

5.
Superelastic deformation of thin Ni-Ti wires containing various nanograined microstructures was investigated by tensile cyclic loading with in situ evaluation of electric resistivity. Defects created by the superelastic cycling in these wires were analyzed by transmission electron microscopy. The role of dislocation slip in superelastic deformation is discussed. Ni-Ti wires having finest microstructures (grain diameter <100 nm) are highly resistant against dislocation slip, while those with fully recrystallized microstructure and grain size exceeding 200 nm are prone to dislocation slip. The density of the observed dislocation defects increases significantly with increasing grain size. The upper plateau stress of the superelastic stress-strain curves is largely grain size independent from 10 up to 1000 nm. It is hence claimed that the Hall-Petch relationship fails for the stress-induced martensitic transformation in this grain size range. It is proposed that dislocation slip taking place during superelastic cycling is responsible for the accumulated irreversible strains, cyclic instability and degradation of functional properties. No residual martensite phase was found in the microstructures of superelastically cycled wires by TEM and results of the in situ electric resistance measurements during straining also indirectly suggest that none or very little martensite phase remains in the studied cycled superelastic wires after unloading. The accumulation of dislocation defects, however, does not prevent the superelasticity. It only affects the shape of the stress-strain response, makes it unstable upon cycling and changes the deformation mode from localized to homogeneous. The activity of dislocation slip during superelastic deformation of Ni-Ti increases with increasing test temperature and ultimately destroys the superelasticity as the plateau stress approaches the yield stress for slip. Deformation twins in the austenite phase ({1 1 4} compound twins) were frequently found in cycled wires having largest grain size. It is proposed that they formed in the highly deformed B19′ martensite phase during forward loading and are retained in austenite after unloading. Such twinning would represent an additional deformation mechanism of Ni-Ti yielding residual irrecoverable strains.  相似文献   

6.
The low-temperature (less than one-fourth of the melting temperature) creep deformation behavior of hexagonally close-packed (HCP) α-Ti–1.6 wt.% V was investigated. Creep tests were performed at various temperatures between room temperature and 205 °C at 95% of the respective yield stress at the different temperatures. The creep strain rate was found to increase with increasing temperature. Scanning and transmission electron microscopy revealed that slip and unusually slow twin growth, or time-dependent twinning, are active deformation mechanisms for the entire temperature range of this investigation. The activation energy for creep of this alloy was calculated to identify the rate-controlling deformation mechanism, and was found to increase with increasing creep strain. At low strain, the activation energy for creep was found to be close to the previously calculated activation energy for slip. At high strain, the calculated activation energy indicates that both slip and twinning are significant deformation mechanisms. The appearance of twinning at high strains is explained by a model for twin nucleation by dislocation pileups.  相似文献   

7.
Lightweight magnesium alloys, such as AZ31, constitute alternative materials of interest for many industrial sectors such as the transport industry. For instance, reducing vehicle weight and thus fuel consumption can actively benefit the global efforts of the current environmental industry policies. To this end, several research groups are focusing their experimental efforts on the development of advanced Mg alloys. However, comparatively little computational work has been oriented towards the simulation of the micromechanisms underlying the deformation of these metals. Among them, the model developed by Staroselsky and Anand [Staroselsky, A., Anand, L., 2003. A constitutive model for HCP materials deforming by slip and twinning: application to magnesium alloy AZ31B. International Journal of Plasticity 19 (10), 1843–1864] successfully captured some of the intrinsic features of deformation in Magnesium alloys. Nevertheless, some deformation micromechanisms, such as cross-hardening between slip and twin systems, have been either simplified or disregarded. In this work, we propose the development of a crystal plasticity continuum model aimed at fully describing the intrinsic deformation mechanisms between slip and twin systems. In order to calibrate and validate the proposed model, an experimental campaign consisting of a set of quasi-static compression tests at room temperature along the rolling and normal directions of a polycrystalline AZ31 rolled sheet, as well as an analysis of the crystallographic texture at different stages of deformation, has been carried out. The model is then exploited by investigating stress and strain fields, texture evolution, and slip and twin activities during deformation. The flexibility of the overall model is ultimately demonstrated by casting light on an experimental controversy on the role of the pyramidal slip 〈c + a〉 versus compression twinning in the late stage of polycrystalline deformation, and a failure criterion related to basal slip activity is proposed.  相似文献   

8.
A micromechanical model using the scale transition method in elastoviscoplasticity has been developed to describe the behaviour of those austenitic steels that display a TWIP effect. A physically based constitutive equation at the grain scale is proposed considering two inelastic strain modes: crystallographic slip and twinning. The typical organizations of microtwins observed in electron microscopy are considered, and the twin–slip as well as the twin–twin interactions are accounted for. The parameters for slip are first fitted on the uniaxial tensile response obtained at intermediate temperatures (when twinning is inhibited). Then, the parameters associated with twinning are identified using the stress–strain curve at room temperature. The simulated results in both macro and micro scales are in good agreement with experimentally obtained results.  相似文献   

9.
Within continuum dislocation theory the plastic deformation of a single crystal with one active slip system under plane-strain constrained shear is investigated. By introducing a twinning shear into the energy of the crystal, we show that in a certain range of straining the formation of deformation twins becomes energetically preferable. An energetic threshold for the onset of twinning is determined. A rough analysis qualitatively describes not only the evolving volume fractions of twins but also their number during straining. Finally, we analyze the evolution of deformation twins and of the dislocation network at non-zero dissipation. We present the corresponding stress-strain hysteresis, the evolution of the plastic distortion, the twin volume fractions and the dislocation densities.  相似文献   

10.
11.
The plastic flow stability of nanotwinned Cu foils was investigated via room temperature rolling. Nanotwinned Cu, with an average twin thickness of 5 nm, exhibited stable plastic flow without shear localization or fracture, even at thickness reduction of over 50%. The retention of {1 1 1} fiber texture after rolling indicates insignificant out-of-plane rotation of the columnar grains and is interpreted in terms of a symmetric slip model. No significant change in the average twin lamellae thickness was seen even at thickness reduction of over 50%, suggesting that some twin boundaries were annihilated during deformation. The annihilation of very thin twins is a consequence of migration of twin boundaries due to the glide of twinning dislocations (disconnections) in the twin plane. The work hardening after rolling is correlated with the dislocation storage at twin boundaries.  相似文献   

12.
In this paper, a constitutive framework based on a rate-dependent crystal plasticity theory is employed to simulate the large strain deformation phenomena in hexagonal closed-packed (HCP) metals such as magnesium. The new framework is incorporated into in-house codes. Simulations are performed using the new crystal plasticity model in which crystallographic slip and deformation twinning are the principal deformation mechanisms. Simulations of various stress states (uniaxial tension, uniaxial compression and the so-called ring hoop tension test) for the magnesium alloy AM30 are performed and the results are compared with experimental observations of specimens deformed at 200 °C. Numerical simulations of forming limit diagrams (FLDs) are also performed using the Marciniak–Kuczynski (M–K) approach. With this formulation, the effects of crystallographic slip and deformation twinning on the FLD can be assessed.  相似文献   

13.
Finite element simulations are used to study strain localization during uniaxial tensile straining of a single crystal with properties representative of pure Al. The crystal is modeled using a constitutive equation incorporating self- and latent-hardening. The simulations are used to investigate the influence of the initial orientation of the loading axis relative to the crystal, as well as the hardening and strain rate sensitivity of the crystal on the strain to localization. We find that (i) the specimen fails by diffuse necking for strain rate exponents m < 100, and a sharp neck for m > 100. (ii) The strain to localization is a decreasing function of m for m < 100, and is relatively insensitive to m for m > 100. (iii) The strain to localization is a minimum when the tensile axis is close to (but not exactly parallel to) a high symmetry direction such as [1 0 0] or [1 1 1] and the variation of the strain to localization with orientation is highly sensitive to the strain rate exponent and latent-hardening behavior of the crystal. This behavior can be explained in terms of changes in the active slip systems as the initial orientation of the crystal is varied.  相似文献   

14.
A model is developed for thermomechanical behavior of defective, low-symmetry ceramic crystals such as αα-corundum. Kinematics resolved are nonlinear elastic deformation, thermal expansion, dislocation glide, mechanical twinning, and residual lattice strains associated with eigenstress fields of defects such as dislocations and stacking faults. Multiscale concepts are applied to describe effects of twinning on effective thermoelastic properties. Glide and twinning are thermodynamically irreversible, while free energy accumulates with geometrically necessary dislocations associated with strain and rotation gradients, statistically stored dislocations, and twin boundaries. The model is applied to describe single crystals of corundum. Hardening behaviors of glide and twin systems from the total density of dislocations accumulated during basal slip are quantified for pure and doped corundum crystals. Residual lattice expansion is predicted from nonlinear elasticity and dislocation line and stacking fault energies.  相似文献   

15.
16.
17.
When uranium alloyed with 6-wt% niobium (U–6Nb) is rapidly compressed in uniaxial strain experiments, shear stress is observed to relax with a characteristic time of 30 ± 7 ns. In shock wave experiments, this relaxation inhibits the development of an elastic precursor commonly seen in other materials. When U–6Nb is cold-rolled to pre-twin and significantly increase the density of dislocations in the material, stress relaxation effects are diminished suggesting that twinning causes relaxation in the un-worked material. Separate ramp wave compression experiments produce effects that agree with those observed in shock-loading experiments. A phenomenological model is introduced that allows accurate simulation of all experiments. Estimates of residual shear stress after relaxation are obtained.  相似文献   

18.
We draw upon existing knowledge of twinning and slip mechanics to develop a diffraction analysis model that allows for empirical quantification of individual deformation mechanisms to the macroscopic behaviors of low symmetry and phase transforming crystalline solids. These methods are applied in studying elasticity, accommodation twinning, deformation twinning, and slip through neutron diffraction data of tensile and compressive deformations of monoclinic NiTi to ~18% true strain. A deeper understanding of tension–compression asymmetry in NiTi is gained by connecting crystallographic calculations of polycrystalline twinning strains with in situ diffraction measurements. Our analyses culminate in empirical, micromechanical quantification of individual elastic, accommodation twinning, deformation twinning, and slip contributions to the total macroscopic stress–strain response of a monoclinic material subjected to large deformations. From these results, we find that 20–40% of the total plastic response at high strains is due to deformation twinning and 60–80% due to slip.  相似文献   

19.
Metals and alloys with hexagonal close packed (HCP) crystal structures can undergo twinning in addition to dislocation slip when loaded mechanically. The complexity of the plastic response and the limited extent of twinning are impediments to their room-temperature formability and thus their widespread adoption. In order to exploit the unusual deformation characteristics of twinning sheet materials in designing novel forming operations, a practical plane stress material model for finite element implementation was sought. Such a model, TWINLAW, has been constructed based on three phenomenological deformation modes for Mg AZ31B: S (slip), T (twinning), and U (untwinning). The modes correspond to three testing regimes: initial in-plane tension (from the annealed state), initial in-plane compression, and in-plane tension following compression, respectively. A von Mises yield surface with initial non-zero back stress was employed to account for plastic yielding asymmetry, with evolution according to a novel isotropic and nonlinear kinematic hardening model. Texture and its evolution were represented throughout deformation using a weighted discrete probability density function of c-axis orientations. The orientation of c-axes evolves with twinning or untwinning using explicit rules incorporated in the model.  相似文献   

20.
Twinning is an important deformation mode in hexagonal metals to accommodate deformation along the c-axis. It differs from slip in that it accommodates shear by means of crystallographic reorientation of domains within the grain. Such reorientation has been shown to be reversible (detwinning) in magnesium alloy aggregates. In this paper we perform in-situ neutron diffraction reversal experiments on high-purity Zr at room temperature and liquid nitrogen temperature, and follow the evolution of twin fraction. The experiments were motivated by previous studies done on clock-rolled Zr, subjected to deformation history changes (direction and temperature), in the quasi-static regime, for temperatures ranging from 76 K to 450 K. We demonstrate here for the first time that detwinning of { 10[`1] 2 } á 10[`1][`1] ñ\left\{ {10\overline 1 2} \right\}\left\langle {10\overline 1 \overline 1 } \right\rangle tensile twins is favored over the activation of a different twin variant in grains of high-purity polycrystalline Zr. A visco-plastic self-consistent (VPSC) model developed previously, which includes combined slip and twin deformation, was used here to simulate the reversal behavior of the material and to interpret the experimental results in terms of slip and twinning activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号