首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Plastic size effects in single crystals are investi-gated by using finite strain and small strain discrete dislo-cation plasticity to analyse the response of cantilever beam specimens. Crystals with both one and two active slip sys-tems are analysed, as well as specimens with different beam aspect ratios. Over the range of specimen sizes analysed here, the bending stress versus applied tip displacement response has a strong hardening plastic component. This hardening rate increases with decreasing specimen size. The hardening rates are slightly lower when the finite strain discrete disloca-tion plasticity (DDP) formulation is employed as curving of the slip planes is accounted for in the finite strain formulation. This relaxes the back-stresses in the dislocation pile-ups and thereby reduces the hardening rate. Our calculations show that in line with the pure bending case, the bending stress in cantilever bending displays a plastic size dependence. How-ever, unlike pure bending, the bending flow strength of the larger aspect ratio cantilever beams is appreciably smaller. This is attributed to the fact that for the same applied bend-ing stress, longer beams have lower shear forces acting upon them and this results in a lower density of statistically stored dislocations.  相似文献   

2.
The Bauschinger and size effects in the thinfilm plasticity theory arising from the defect-energy of geometrically necessary dislocations (GNDs) are analytically investigated in this paper. Firstly, this defect-energy is deduced based on the elastic interactions of coupling dislocations (or pile-ups) moving on the closed neighboring slip plane. This energy is a quadratic function of the GNDs density, and includes an elastic interaction coefficient and an energetic length scale L. By incorporating it into the work- conjugate strain gradient plasticity theory of Gurtin, an energetic stress associated with this defect energy is obtained, which just plays the role of back stress in the kinematic hardening model. Then this back-stress hardening model is used to investigate the Bauschinger and size effects in the tension problem of single crystal Al films with passivation layers. The tension stress in the film shows a reverse dependence on the film thickness h. By comparing it with discrete-dislocation simulation results, the length scale L is determined, which is just several slip plane spacing, and accords well with our physical interpretation for the defect- energy. The Bauschinger effect after unloading is analyzed by combining this back-stress hardening model with a friction model. The effects of film thickness and pre-strain on the reversed plastic strain after unloading are quantified and qualitatively compared with experiment results.  相似文献   

3.
The tensile response of single crystal films passivated on two sides is analysed using climb enabled discrete dislocation plasticity. Plastic deformation is modelled through the motion of edge dislocations in an elastic solid with a lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation incorporated through a set of constitutive rules. The dislocation motion in the films is by glide-only or by climb-assisted glide whereas in the surface passivation layers dislocation motion occurs by glide-only and penalized by a friction stress. For realistic values of the friction stress, the size dependence of the flow strength of the oxidised films was mainly a geometrical effect resulting from the fact that the ratio of the oxide layer thickness to film thickness increases with decreasing film thickness. However, if the passivation layer was modelled as impenetrable, i.e. an infinite friction stress, the plastic hardening rate of the films increases with decreasing film thickness even for geometrically self-similar specimens. This size dependence is an intrinsic material size effect that occurs because the dislocation pile-up lengths become on the order of the film thickness. Counter-intuitively, the films have a higher flow strength when dislocation motion is driven by climb-assisted glide compared to the case when dislocation motion is glide-only. This occurs because dislocation climb breaks up the dislocation pile-ups that aid dislocations to penetrate the passivation layers. The results also show that the Bauschinger effect in passivated thin films is stronger when dislocation motion is climb-assisted compared to films wherein dislocation motion is by glide-only.  相似文献   

4.
5.
颗粒增强铜基复合材料因具有极高的强度和弹性模量, 优异的导电、导热性能和抗磨损能力, 被广泛应用于航天航空、汽车、电子工业等领域. 第二相强化是其主要的强化方式, 其通过合金中弥散的微粒阻碍位错运动, 可有效提高金属材料的力学性能, 提高其服役安全. 针对该问题本文采用三维离散位错动力学(three-dimensional discrete dislocation dynamics, 3D-DDD)方法, 对微尺度颗粒增强铜基复合材料进行了微柱压缩模拟, 分析了位错与第二相颗粒交互作用对材料力学响应的影响, 揭示第二相颗粒强化的微观机理. 本研究将第二相颗粒视为位错不可穿透的球形微粒, 采用位错绕过机制模拟颗粒与位错的交互作用过程. 通过调控滑移面相对于第二相颗粒中心的距离发现: 屈服应力和应变硬化率均随距离的增大而减小. 研究也发现Schmid因子越高的滑移系, 屈服应力越低, 后续应变硬化率越低. 多位错与颗粒交互作用的模拟发现, 同一滑移面中位错间的反应和不同滑移系中位错的交互作用可能是导致屈服应力和应变硬化率降低的关键.   相似文献   

6.
In a recent publication, we derived the mesoscale continuum theory of plasticity for multiple-slip systems of parallel edge dislocations, motivated by the statistical-based nonlocal continuum crystal plasticity theory for single-glide given by Yefimov et al. [2004b. A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity simulations. J. Mech. Phys. Solids 52, 279-300]. In this dislocation field theory (DiFT) the transport equations for both the total dislocation density and geometrically necessary dislocation (GND) density on each slip system were obtained from the Peach-Koehler interactions through both single and pair dislocation correlations. The effect of pair correlation interactions manifested itself in the form of a back stress in addition to the external shear and the self-consistent internal stress. We here present the study of size effects in single crystalline thin films with symmetric double slip using the novel continuum theory. Two boundary value problems are analyzed: (1) stress relaxation in thin films on substrates subject to thermal loading, and (2) simple shear in constrained films. In these problems, earlier discrete dislocation simulations had shown that size effects are born out of layers of dislocations developing near constrained interfaces. These boundary layers depend on slip orientations and applied loading but are insensitive to the film thickness. We investigate the stress response to changes in controlled parameters in both problems. Comparisons with previous discrete dislocation simulations are discussed.  相似文献   

7.
This paper describes a numerical, hierarchical multiscale modeling methodology involving two distinct bridges over three different length scales that predicts the work hardening of face centered cubic crystals in the absence of physical experiments. This methodology builds a clear bridging approach connecting nano-, micro- and meso-scales. In this methodology, molecular dynamics simulations (nanoscale) are performed to generate mobilities for dislocations. A discrete dislocations numerical tool (microscale) then uses the mobility data obtained from the molecular dynamics simulations to determine the work hardening. The second bridge occurs as the material parameters in a slip system hardening law employed in crystal plasticity models (mesoscale) are determined by the dislocation dynamics simulation results. The material parameters are computed using a correlation procedure based on both the functional form of the hardening law and the internal elastic stress/plastic shear strain fields computed from discrete dislocations. This multiscale bridging methodology was validated by using a crystal plasticity model to predict the mechanical response of an aluminum single crystal deformed under uniaxial compressive loading along the [4 2 1] direction. The computed strain-stress response agrees well with the experimental data.  相似文献   

8.
Bending of a strip in plane strain is analyzed using discrete dislocation plasticity where the dislocations are modeled as line defects in a linear elastic medium. At each stage of loading, superposition is used to represent the solution in terms of the infinite medium solution for the discrete dislocations and a complementary solution that enforces the boundary conditions, which is non-singular and obtained from a linear elastic, finite element solution. The lattice resistance to dislocation motion, dislocation nucleation and dislocation annihilation are incorporated into the formulation through a set of constitutive rules. Solutions for cases with multiple slip systems and with a single slip system are presented. The bending moment versus rotation relation and the evolution of the dislocation structure are outcomes of the boundary value problem solution. The effects of slip geometry, obstacles to dislocation motion and specimen size on the moment versus rotation response are considered. Also, the evolution of the dislocation structure is studied with emphasis on the role of geometrically necessary dislocations. The dislocation structure that develops leads to well-defined slip bands, with the slip band spacing scaling with the specimen height.  相似文献   

9.
10.
The two-dimensional discrete dislocation dynamics (2D DD) method, consisting of parallel straight edge dislocations gliding on independent slip systems in a plane strain model of a crystal, is often used to study complicated boundary value problems in crystal plasticity. However, the absence of truly three dimensional mechanisms such as junction formation means that forest hardening cannot be modeled, unless additional so-called ‘2.5D’ constitutive rules are prescribed for short-range dislocation interactions. Here, results from three dimensional dislocation dynamics (3D DD) simulations in an FCC material are used to define new constitutive rules for short-range interactions and junction formation between dislocations on intersecting slip systems in 2D. The mutual strengthening effect of junctions on preexisting obstacles, such as precipitates or grain boundaries, is also accounted for in the model. The new ‘2.5D’ DD model, with no arbitrary adjustable parameters beyond those obtained from lower scale simulation methods, is shown to predict athermal hardening rates, differences in flow behavior for single and multiple slip, and latent hardening ratios. All these phenomena are well-established in the plasticity of crystals and quantitative results predicted by the model are in good agreement with experimental observations.  相似文献   

11.
The rate-dependent behavior of micron-scale model planar crystals is investigated using the framework of mechanism-based discrete dislocation plasticity. Long-range interactions between dislocations are accounted for through elasticity. Mechanism-based constitutive rules are used to represent the short-range interactions between dislocations, including dislocation multiplication and dislocation escape at free surfaces. Emphasis is laid on circumstances where the deformed samples are not statistically homogeneous. The calculations show that dimensional constraints selectively set the operating dislocation mechanisms, thus giving rise to the phenomenon of exhaustion hardening whereby the applied strain rate is predominantly accommodated by elastic deformation. When conditions are met for this type of hardening to take place, the calculations reproduce some interesting qualitative features of plastic deformation in microcrystals, such as flow intermittency over coarse time-scales and large values of the flow stress with no significant accumulation of dislocation density. In addition, the applied strain rate is varied down to 0.1 s−1 and is found to affect the rate of exhaustion hardening.  相似文献   

12.
To investigate the mechanical behavior of the microlayered metallic thin films (MMMFs) at elevated temperature, an enhanced discrete-continuous model (DCM), which couples rather than superposes the two-dimensional climb/glide-enabled discrete dislocation dynamics (2D-DDD) with the linearly elastic finite element method (FEM), is developed in this study. In the present coupling scheme, two especial treatments are made. One is to solve how the plastic strain captured by the DDD module is transferred properly to the FEM module as an eigen-strain; the other is to answer how the stress field computationally obtained by the FEM module is transferred accurately to the DDD module to drive those discrete dislocations moving correctly. With these two especial treatments, the interactions between adjacent dislocations and between dislocation pile-ups and inter-phase boundaries (IBs), which are crucial to the strengthening effect in MMMFs, are carefully taken into account. After verified by comparing the computationally predicted results with the theoretical solutions for a dislocation residing in a homogeneous material and nearby a bi-material interface, this 2D-DDD/FEM coupling scheme is used to model the tensile mechanical behaviors of MMMFs at elevated temperature. The strengthening mechanism of MMMFs and the layer thickness effect are studied in detail, with special attentions to the influence of dislocation climb on them.  相似文献   

13.
In continuum models of dislocations, proper formulations of short-range elastic interactions of dislocations are crucial for capturing various types of dislocation patterns formed in crystalline materials. In this article, the continuum dynamics of straight dislocations distributed on two parallel slip planes is modelled through upscaling the underlying discrete dislocation dynamics. Two continuum velocity field quantities are introduced to facilitate the discrete-to-continuum transition. The first one is the local migration velocity of dislocation ensembles which is found fully independent of the short-range dislocation correlations. The second one is the decoupling velocity of dislocation pairs controlled by a threshold stress value, which is proposed to be the effective flow stress for single slip systems. Compared to the almost ubiquitously adopted Taylor relationship, the derived flow stress formula exhibits two features that are more consistent with the underlying discrete dislocation dynamics: (i) the flow stress increases with the in-plane component of the dislocation density only up to a certain value, hence the derived formula admits a minimum inter-dislocation distance within slip planes; (ii) the flow stress smoothly transits to zero when all dislocations become geometrically necessary dislocations. A regime under which inhomogeneities in dislocation density grow is identified, and is further validated through comparison with discrete dislocation dynamical simulation results. Based on the findings in this article and in our previous works, a general strategy for incorporating short-range dislocation correlations into continuum models of dislocations is proposed.  相似文献   

14.
15.
Slip deformation in the vicinity of a micro void in metal crystals is analyzed by a crystal plasticity technique, and the geometrically necessary dislocations, which accompany the gradient of plastic shear strain on slip systems, are evaluated. Aggregates of dislocation segments on pairs of slip systems that have the same slip directions but different slip planes exhibit a rhombus-shaped structure, and the structure is shown to be equivalent to prismatic dislocation loops of the interstitial type. Material transport and growth of voids are discussed in terms of GN dislocations.  相似文献   

16.
The grain size dependence of the flow strength of polycrystals is analyzed using plane strain, discrete dislocation plasticity. Dislocations are modeled as line singularities in a linear elastic solid and plasticity occurs through the collective motion of large numbers of dislocations. Constitutive rules are used to model lattice resistance to dislocation motion, as well as dislocation nucleation, dislocation annihilation and the interaction with obstacles. The materials analyzed consist of micron scale grains having either one or three slip systems and two types of grain arrangements: either a checker-board pattern or randomly dispersed with a specified volume fraction. Calculations are carried out for materials with either a high density of dislocation sources or a low density of dislocation sources. In all cases, the grain boundaries are taken to be impenetrable to dislocations. A Hall–Petch type relation is predicted with Hall–Petch exponents ranging from ≈0.3 to ≈1.6 depending on the number of slip systems, the grain arrangement, the dislocation source density and the range of grain sizes to which a Hall–Petch expression is fit. The grain size dependence of the flow strength is obtained even when no slip incompatibility exists between grains suggesting that slip blocking/transmission governs the Hall–Petch effect in the simulations.  相似文献   

17.
The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation, the dislocations are all of edge character and are modelled as line singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation and strain gradient plasticity formulations predict a negligible size effect under shear loading. By contrast, under equi-biaxial loading both plasticity formulations predict a strong size dependence with the flow strength approximately scaling inversely with the void spacing. Excellent agreement is obtained between predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model is chosen to be (about 10 times the slip plane spacing in the discrete dislocation models).  相似文献   

18.
A thermodynamically consistent, large strain phase field approach to dislocation nucleation and evolution at the nanoscale is developed. Each dislocation is defined by an order parameter, which determines the magnitude of the Burgers vector for the given slip planes and directions. The kinematics is based on the multiplicative decomposition of the deformation gradient into elastic and plastic contributions. The relationship between the rates of the plastic deformation gradient and the order parameters is consistent with phenomenological crystal plasticity. Thermodynamic and stability conditions for homogeneous states are formulated and satisfied by the proper choice of the Helmholtz free energy and the order parameter dependence on the Burgers vector. They allow us to reproduce desired lattice instability conditions and a stress-order parameter curve, as well as to obtain a stress-independent equilibrium Burgers vector and to avoid artificial dissipation during elastic deformation. The Ginzburg–Landau equations are obtained as the linear kinetic relations between the rate of change of the order parameters and the conjugate thermodynamic driving forces. A crystalline energy coefficient for dislocations is defined as a periodic step-wise function of the coordinate along the normal to the slip plane, which provides an energy barrier normal to the slip plane and determines the desired, mesh-independent height of the dislocation bands for any slip system orientation. Gradient energy contains an additional term, which excludes the localization of a dislocation within a height smaller than the prescribed height, but it does not produce artificial interface energy. An additional energy term is introduced that penalizes the interaction of different dislocations at the same point. Non-periodic boundary conditions for dislocations are introduced which include the change of the surface energy due to the exit of dislocations from the crystal. Obtained kinematics, thermodynamics, and kinetics of dislocations at large strains are simplified for small strains and rotations, as well.  相似文献   

19.
Discrete dislocation plasticity models and strain-gradient plasticity theories are used to investigate the role of interfaces in the elastic–plastic response of a sheared single crystal. The upper and lower faces of a single crystal are bonded to rigid adherends via interfaces of finite thickness. The sandwich system is subjected to simple shear, and the effect of thickness of crystal layer and of interfaces upon the overall response are explored. When the interface has a modulus less than that of the bulk material, both the predicted plastic size effect and the Bauschinger effect are considerably reduced. This is due to the relaxation of the dislocation stress field by the relatively compliant surface layer. On the other hand, when the interface has a modulus equal to that of the bulk material a strong size effect in hardening as well as a significant reverse plasticity are observed in small specimens. These effects are attributed to the energy stored in the elastic fields of the geometrically necessary dislocations (GNDs).  相似文献   

20.
In this paper, a multiscale model that combines both macroscopic and microscopic analyses is presented for describing the ductile fracture process of crystalline materials. In the macroscopic fracture analysis, the recently developed strain gradient plasticity theory is used to describe the fracture toughness, the shielding effects of plastic deformation on the crack growth, and the crack tip field through the use of an elastic core model. The crack tip field resulting from the macroscopic analysis using the strain gradient plasticity theory displayes the 1/2 singularity of stress within the strain gradient dominated region. In the microscopic fracture analysis, the discrete dislocation theory is used to describe the shielding effects of discrete dislocations on the crack growth. The result of the macroscopic analysis near the crack tip, i.e. a new K-field, is taken as the boundary condition for the microscopic fracture analysis. The equilibrium locations of the discrete dislocations around the crack and the shielding effects of the discrete dislocations on the crack growth at the microscale are calculated. The macroscopic fracture analysis and the microscopic fracture analysis are connected based on the elastic core model. Through a comparison of the shielding effects from plastic deformation and the discrete dislocations, the elastic core size is determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号