首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A micromechanical model is proposed to describe both stable and unstable damage evolution in microcrack-weakened brittle rock material subjected to dynamic uniaxial tensile loads. The basic idea of the present model is to classify the constitution relationship of rock material subjected to dynamic uniaxial tensile loads into four stages including some of the stages of linear elasticity, pre-peak nonlinear hardening, rapid stress drop, and strain softening, and to investigate their corresponding micromechanical damage mechanisms individually. Special attention is paid to the transition from structure rearrangements on microscale to the macroscopic inelastic strain, to the transition from distribution damage to localization of damage and the transition from homogeneous deformation to localization of deformation. The influence of all microcracks with different sizes and orientations are introduced into the constitutive relation by using the statistical average method. Effects of microcrack interaction on the complete stress-strain relation as well as the localization of damage for microcrack-weakened brittle rock material are analyzed by using effective medium method. Each microcrack is assumed to be embedded in an approximate effective medium that is weakened by uniformly distributed microcracks of the statistically-averaged length depending on the actual damage state. The elastic moduli of the approximate effective medium can be determined by using the dilute distribution method. Micromechanical kinetic equations for stable and unstable growth characterizing the ‘process domains’ of active microcracks are taken into account. These ‘process domains’ together with ‘open microcrack domains’ completely determine the integration domains of ensemble averaged constitutive equations relating macro-strain and macro-stress. Theoretical predictions have shown to consistent with the experimental results.  相似文献   

2.
Different measures have been suggested for quantifying the amount of fragmentation in randomly compacted crushable aggregates. A most effective and popular measure is to adopt variants of Hardin's [1985. Crushing of soil particles. J. Geotech. Eng. ASCE 111(10), 1177-1192] definition of relative breakage ‘Br’. In this paper we further develop the concept of breakage to formulate a new continuum mechanics theory for crushable granular materials based on statistical and thermomechanical principles. Analogous to the damage internal variable ‘D’ which is used in continuum damage mechanics (CDM), here the breakage internal variable ‘B’ is adopted. This internal variable represents a particular form of the relative breakage ‘Br’ and measures the relative distance of the current grain size distribution from the initial and ultimate distributions. Similar to ‘D’, ‘B’ varies from zero to one and describes processes of micro-fractures and the growth of surface area. However, unlike damage that is most suitable to tensioned solid-like materials, the breakage is aimed towards compressed granular matter. While damage effectively represents the opening of micro-cavities and cracks, breakage represents comminution of particles. We term the new theory continuum breakage mechanics (CBM), reflecting the analogy with CDM. A focus is given to developing fundamental concepts and postulates, and identifying the physical meaning of the various variables. In this part of the paper we limit the study to describe an ideal dissipative process that includes breakage without plasticity. Plastic strains are essential, however, in representing aspects that relate to frictional dissipation, and this is covered in Part II of this paper together with model examples.  相似文献   

3.
Based on the knowledge of the anisotropy associated with the martensitic transformations obtained from tension/compression experiments with oriented CuAlNi single crystals, a simple constant stress averaging approach is employed to model the SMA polycrystal deformation behaviors. Only elastic and inelastic strains due to the martensitic transformation, variant reorientations in the martensite phase and martensite to martensite transformations in thermomechanical loads are considered. The model starts from theoretical calculation of the stress-temperature transformation conditions and their orientation dependence from basic crystallographic and material attributes of the martensitic transformations. Results of the simulations of the NiTi, NiAl, and Cu-based SMA polycrystals in stress–strain tests are shown. It follows that SMA polycrystals, even with randomly oriented grains, typically exhibit tension/compression asymmetry of the shape of the pseudoelastic σε curves in transformation strain, transformation stress, hysteresis widths, character of the pseudoelastic flow and in the slope of temperature dependence of the transformation stresses. It is concluded that some macroscopic features of the SMA polycrystal behaviors originate directly from the crystallography of the undergoing MT's. The model shows clearly the crystallographic origin of these phenomena by providing a link from the crystallographic and material attributes of martensitic transformations towards the macroscopic σεT behaviors of SMA polycrystals.  相似文献   

4.
Low cycle fatigue tests were carried out on a model ‘two-dimensional’ polycrystalline nickel-base alloy; that is, a directionally solidified material with near prismatic grains. Grain morphology and orientation were determined using electron back scatter diffraction (EBSD), and polycrystal plasticity analyses carried out for the characterised microstructure with, in principle, identical conditions to the experiment tests.  相似文献   

5.
One-dimensional ‘steady-shock’ models based on a rate-independent, rigid, perfectly-plastic, locking (r-p-p-l) idealisation of the quasi-static stress-strain curves for aluminium foams are proposed for two different impact scenarios to provide a first-order understanding of the dynamic compaction process. A thermo-mechanical approach is used in the formulation of their governing equations. Predictions by the models are compared with experimental data presented in the companion paper (Part I) and with the results of finite-element simulations of two-dimensional Voronoi honeycombs.A kinematic existence condition for continuing ‘shock’ propagation in aluminium foams is established using thermodynamics arguments and its predictions compare well with the experimental data. The thermodynamics highlight the incorrect application of the global energy balance approach to describe ‘shock’ propagation in cellular solids which appears in some current literature.  相似文献   

6.
Various self-consistent polycrystal plasticity models for hexagonal close packed (HCP) polycrystals are evaluated by studying the deformation behavior of magnesium alloy AZ31B sheet under different uniaxial strain paths. In all employed polycrystal plasticity models both slip and twinning contribute to plastic deformation. The material parameters for the various models are fitted to experimental uniaxial tension and compression along the rolling direction (RD) and then used to predict uniaxial tension and compression along the traverse direction (TD) and uniaxial compression in the normal direction (ND). An assessment of the predictive capability of the polycrystal plasticity models is made based on comparisons of the predicted and experimental stress responses and R values. It is found that, among the models examined, the self-consistent models with grain interaction stiffness halfway between those of the limiting Secant (stiff) and Tangent (compliant) approximations give the best results. Among the available options, the Affine self-consistent scheme results in the best overall performance. Furthermore, it is demonstrated that the R values under uniaxial tension and compression within the sheet plane show a strong dependence on imposed strain. This suggests that developing anisotropic yield functions using measured R values must account for the strain dependence.  相似文献   

7.
In this study, a homogenization theory based on the Gurtin strain gradient formulation and its finite element discretization are developed for investigating the size effects on macroscopic responses of periodic materials. To derive the homogenization equations consisting of the relation of macroscopic stress, the weak form of stress balance, and the weak form of microforce balance, the Y-periodicity is used as additional, as well as standard, boundary conditions at the boundary of a unit cell. Then, by applying a tangent modulus method, a set of finite element equations is obtained from the homogenization equations. The computational stability and efficiency of this finite element discretization are verified by analyzing a model composite. Furthermore, a model polycrystal is analyzed for investigating the grain size dependence of polycrystal plasticity. In this analysis, the micro-clamped, micro-free, and defect-free conditions are considered as the additional boundary conditions at grain boundaries, and their effects are discussed.  相似文献   

8.
Most polycrystal models of plastic deformation rely on the assumption that strain and stress are uniform within the domain of each grain. Comparison between measured and predicted textures suggests that this assumption is realistic for most single-phase aggregates and crystal symmetries. In this paper, we implement a self-consistent N-site model that allows one to account for strain localization and local misorientation near grain boundaries. We apply this model to face centered cubic (fcc) and hexagonal close packed (hcp) aggregates, and analyze the similarities and differences with a one-site model that assumes uniform stress and strain-rate within a grain. We find that the assumption of uniformity is justified in first order. We discuss the implications of the N-site model for the simulation of systems with hard inclusions, orientation correlations, and recrystallization mechanisms.  相似文献   

9.
An elasto-plastic self-consistent (EPSC) polycrystal model is extended to account, in an approximate fashion, for the kinematics of large strains, rigid body rotations, texture evolution and grain shape evolution. In situ neutron diffraction measurements of the flow stress, internal strain, texture and diffraction peak intensity evolutions were performed on polycrystalline copper and stainless steel, up to true tensile strains of ε = 0.3. Suitably adjusted slip system hardening model parameters enable the model to quantitatively describe the flow stress of the polycrystalline aggregate. Quantitative predictions of the texture evolution and the internal strain evolution along the stress axis are good, while predictions of transverse internal strains (perpendicular to the tensile loading direction) are less satisfactory. The latter exhibit a large dispersion from grain to grain around a macroscopic average, and the implications of this finding for the interpretation of in situ neutron diffraction method are explored. Finally, as a demonstration of the applicability of the model to problems involving finite rotation, as well as deformation, simulations of simple shear were conducted which predict a texture evolution in agreement with published experimental data, and other modeling approaches as well.  相似文献   

10.
The wall void peaking distribution observed in an upward turbulent bubbly boundary layer along a flat plate is generated by bubbles that move towards the plate, come into contact with the wall and then slide along it. This transverse ‘migration’ has been studied using flow visualization, high speed video and particle tracking techniques to measure the trajectories of mono-disperse air bubbles at very low void fractions. Investigations have been performed at four Reynolds numbers in the range 280 < Reθ < 3000, covering both the laminar and turbulent regimes, with mono-disperse bubbles of mean equivalent diameter between 2 mm and 6 mm. Lagrangian statistics calculated from hundreds of trajectories show that the migration only occurs in the turbulent regime and for bubble diameters below some critical value: 3.5 mm < deqcrit < 4 mm. Above this size (We > 3), the interface deformation is such that bubbles do not remain at the wall, even when they are released at the surface. Also, bubble migration is shown to be non-systematic, to have a non-deterministic character in the sense that trajectories differ significantly, to increase with Reynolds number and to take place on a short time scale. A series of experiments with isolated bubbles demonstrates that these results are not influenced by bubble–bubble interactions and confirm that two-way coupling in the flow is limited. Flow visualizations show that the migration originates with the capture of bubbles inside the large turbulent structures of the boundary layer (‘bulges’). The bubbles begin to move towards the wall as they cross these structures, and the point at which they reach the wall is strongly correlated with the position of the deep ‘valleys’ which separate the turbulent ‘bulges’. The analysis of the mean Lagrangian trajectories of migrating bubbles confirms these observations. Firstly, the average time of migration calculated from these trajectories coincides with the mean transit time of the bubbles across the structures. Secondly, once the trajectories have been scaled by this transit time and the boundary layer thickness δ, they all have the same form in the region y/δ < 0.4, independent of the Reynolds number.  相似文献   

11.
In this work, a three dimensional crystal plasticity-based finite element model is presented to examine the micromechanical behaviour of austenitic stainless steels. The model accounts for realistic polycrystal micromorphology, the kinematics of crystallographic slip, lattice rotation, slip interaction (latent hardening) and geometric distortion at finite deformation. We utilise the model to predict the microscopic lattice strain evolution of austenitic stainless steels during uniaxial tension at ambient temperature with validation through in situ neutron diffraction measurements. Overall, the predicted lattice strains are in very good agreement with those measured in both longitudinal and transverse directions (parallel and perpendicular to the tensile loading axis, respectively). The information provided by the model suggests that the observed nonlinear response in the transverse {200} grain family is associated with a competitive bimodal evolution of strain during inelastic deformation. The results associated with latent hardening effects at the microscale also indicate that in situ neutron diffraction measurements in conjunction with macroscopic uniaxial tensile data may be used to calibrate crystal plasticity models for the prediction of the inelastic material deformation response.  相似文献   

12.
This paper reports on the experimental examination of the deformation characteristics near a crack tip in a cyclically work-hardened copper single crystal using a 2D surface scans with nano-indentation. The experimental methodology enables the characterization of the primary deformation field near a crack tip via the modulation of the imposed secondary deformation field by a nano-indentation. In a heavily deformed 4-point bend specimen, the measurements showed an existence of an asymptotic field around the crack tip at a distance of R  2.5J/σ0. The measurements also showed the qualitative details of toughness evolution within the high-gradient deformation field around the crack tip. The nature of dislocation distribution (i.e. statistically distributed vs. distributions necessitated by geometry) around the crack tip is quantified. The measurements indicate the dominance of the geometrically necessary dislocation within the finite deformation zone ahead of the tip up to a distance of R  3J/σ0. Thereafter, it is confined in radial rays coinciding with the sector boundaries around the crack tip. These measurements elucidate the origin of the inhomogeneous hardening and the size dependent macroscopic response close to crack tip.  相似文献   

13.
A viscoplastic model is presented for distributing the deformation applied to a polycrystal in a non-uniform fashion among the constituent crystals. Interactions with surrounding crystals are incorporated in the calculation of the deformation rate of each crystal through an appropriately defined local neighborhood. A compliance tensor is computed for each crystal based on a viscoplastic constitutive relation for deformation by crystallographic slip. The compliance of the crystal relative to that of its neighborhood provides a means for partitioning the macroscopic deformation rate among the crystals. The deviation of the crystal deformation rate from the macroscopic value is suitably scaled to obtain the crystal spin. Polycrystal simulations of crystallographic texture development using this model are compared to the results of similar calculations using the Taylor model, to finite element simulations of a model polycrystal, and to experimental data. The model incorporating neighbor interactions is shown to result in improved texture predictions, in terms of both the intensity levels and the locations of certain texture components.  相似文献   

14.
A further development of the mechanism-based strain gradient plasticity model well established in literature is reported. The major new element is the inclusion of the cell size effect in dislocation cell forming materials. It is based on a ‘phase mixture’ approach in which the dislocation cell interiors and dislocation cell walls are treated as separate ‘phases’. The model was applied to indentation testing of copper severely pre-strained by equal channel angular pressing. The deformation behaviour and the intrinsic length scale parameter of the gradient plasticity model were related to the micro-structural characteristics, notably the dislocation cell size, resulting from the deformation history of the material.  相似文献   

15.
Wave fronts admitting discontinuities only in the derivatives of the dependent variables are by convention called ‘weak’ waves. For the special case of discontinuous first-order derivatives, the fronts are customarily called ‘acceleration’ waves. If the governing equations are quasi-linear, then the weak waves are necessarily characteristic surfaces. Sometimes, these surfaces are also referred to as ‘singular surfaces’ of order r ? 1, where r stands for the order of the first discontinuous derivatives. This latter approach is adopted in this paper and applied to governing equations which form a set of first-order quasi-linear hyperbolic equations. When these equations are written in terms of singular surface coordinates, simplification occurs upon differencing equations written on the front and rear sides of the surface: a set of algebraic (‘connection’) equations is generated for the discontinuities in the normal derivatives of the dependent variables across the surface. When a similar operation is performed on the governing equations written for second-order derivatives, a set of first-order differential (‘transport’) equations is generated.  相似文献   

16.
Numerous criteria have been developed for ductile fracture (DF) prediction in metal plastic deformation. Finding a way to select these DF criteria (DFCs) and identify their applicability and reliability, however, is a non-trivial issue that still needs to be addressed in greater depth. In this study, several criteria under the categories of ‘uncoupled damage criterion’ and the ‘coupled damage criterion’, including the continuum damage mechanics (CDM)-based Lemaitre model and the Gurson-Tvergaard-Needleman (GTN) model, are investigated to determine their reliability in ductile failure prediction. To create diverse stress and strain states and fracture modes, different deformation scenarios are generated using tensile and compression tests of Al-alloy 6061 (T6) with different sample geometries and dimensions. The two categories of criteria are coded into finite element (FE) models based on the unconditional stress integration algorithm in the VUMAT/ABAQUS platform. Through physical experiments, computations and three industrial case studies, the entire correlation panorama of the DFCs, deformation modes and DF mechanisms is established and articulated. The experimental and simulation results show the following. (1) The mixed DF mode exists in every deformation of concern in this study, even in the tensile test of the round bar sample with the smallest notch radius. A decrease of stress triaxiality (η-value) leads to a reduction in the accuracy of DF prediction by the two DFC categories of DFCs, due to the interplay between the principal stress dominant fracture and the shear-stress dominant factor. (2) For deformations with a higher η-value, both categories of DFCs predict the fracture location reasonably well. For those with a lower or even negative η-value, the GTN and CDM-based criteria and some of the uncoupled criteria, including the C&L, Ayada and Oyane models, provide relatively better predictions. Only the Tresca and Freudenthal models can properly predict the shear dominant fracture. The reliability sequence of fracture moment prediction is thus the GTN model, followed by the CDM-based model and the uncoupled models. (3) The applicability of the DFCs depends on the use of suitable damage evolution rules (void nucleation/growth/coalescence and shear band) and consideration of several influential factors, including pressure stress, stress triaxiality, the Lode parameter, and the equivalent plastic strain or shear stress. These parameters determine the deformation mode (shear dominant or maximum principal stress dominant deformation) and, further, the DF mechanism (dimple fracture/shear fracture/mixed fracture).  相似文献   

17.
Necessary and sufficient conditions are established for the stress response of a linearly elastic material to an isotropic stain to be hydrostatic. In the 3D case, these conditions are satisfied not only by the isotropic and cubic materials but also by all other anisotropic materials provided appropriate restrictions are imposed. In the 2D case, only the isotropic and square materials have an isotropic stress response to an isotropic strain. Using a uniform field argument, the elastic bulk modulus of a polycrystal consisting of monocrystals compatible with the established conditions is shown to equal that of any constituent monocrystal. Thus, Hill's relevant result about a polycrystal composed of cubic monocrystals is generalized. To cite this article: Q.-C. He, C. R. Mecanique 331 (2003).  相似文献   

18.
Nonsingular, stressed, dislocation (wall) profiles are shown to be 1-d equilibria of a non-equilibrium theory of Field Dislocation Mechanics (FDM). It is also shown that such equilibrium profiles corresponding to a given level of load cannot generally serve as a travelling wave profile of the governing equation for other values of nearby constant load; however, one case of soft loading with a special form of the dislocation velocity law is demonstrated to have no ‘Peierls barrier’ in this sense. The analysis is facilitated by the formulation of a 1-d, scalar, time-dependent, Hamilton-Jacobi equation as an exact special case of the full 3-d FDM theory accounting for non-convex elastic energy, small, Nye-tensor-dependent core energy, and possibly an energy contribution based on incompatible slip. Relevant nonlinear stability questions, including that of nucleation, are formulated in a non-equilibrium setting. Elementary averaging ideas show a singular perturbation structure in the evolution of the (unsymmetric) macroscopic plastic distortion, thus pointing to the possibility of predicting generally rate-insensitive slow response constrained to a tensorial ‘yield’ surface, while allowing fast excursions off it, even though only simple kinetic assumptions are employed in the microscopic FDM theory. The emergent small viscosity on averaging that serves as the small parameter for the perturbation structure is a robust, almost-geometric consequence of large gradients of slip in the dislocation core and the persistent presence of a large number of dislocations in the averaging volume. In the simplest approximation, the macroscopic yield criterion displays anisotropy based on the microscopic dislocation line and Burgers vector distribution, a dependence on the Laplacian of the incompatible slip tensor and a nonlocal term related to a Stokes-Helmholtz-curl projection of an ‘internal stress’ derived from the incompatible slip energy.  相似文献   

19.
A new macroscopic model for swelling porous media is derived based on a rigorous upscaling of the microstructure. Considering that at the microscale the medium is composed of a charged solid phase (e.g. clay platelets, bio-macromolecules, colloidal or polymeric particles) saturated by a binary monovalent aqueous electrolyte solution composed of cations + and anions – of an entirely dissociated salt, the homogenization procedure is applied to scale up the pore-scale model. The microscopic system of governing equations consists of the local electro-hydrodynamics governing the movement of the electrolyte solution (Poisson–Boltzmann coupled with a modified Stokes problem including an additional body force of Coulombic interaction) together with modified convection–diffusion equations governing cations and anions transport. This system is coupled with the elasticity problem which describes the deformation of the solid phase. Novel forms of Terzaghi's effective principle and Darcy's law are derived including the effects of swelling pressure and osmotically induced flows, respectively. Micromechanical representations are provided for the macroscopic physico-chemical quantities.  相似文献   

20.
On the effective stress in unsaturated porous continua with double porosity   总被引:3,自引:0,他引:3  
Using mixture theory we formulate the balance laws for unsaturated porous media composed of a double-porosity solid matrix infiltrated by liquid and gas. In this context, the term ‘double porosity’ pertains to the microstructural characteristic that allows the pore spaces in a continuum to be classified into two pore subspaces. We use the first law of thermodynamics to identify energy-conjugate variables and derive an expression for the ‘effective’, or constitutive, stress that is energy-conjugate to the rate of deformation of the solid matrix. The effective stress has the form , where σ is the total Cauchy stress tensor, B is the Biot coefficient, and is the mean fluid pressure weighted according to the local degrees of saturation and pore fractions. We identify other emerging energy-conjugate pairs relevant for constitutive modeling of double-porosity unsaturated continua, including the local suction versus degree of saturation pair and the pore volume fraction versus weighted pore pressure difference pair. Finally, we use the second law of thermodynamics to determine conditions for maximum plastic dissipation in the regime of inelastic deformation for the unsaturated two-porosity mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号