首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents an incremental-secant mean-field homogenization (MFH) procedure for composites made of elasto-plastic constituents exhibiting damage. During the damaging process of one phase, the proposed method can account for the resulting unloading of the other phase, ensuring an accurate prediction of the scheme. When strain softening of materials is involved, classical finite element formulations lose solution uniqueness and face the strain localization problem. To avoid this issue the model is formulated in a so-called implicit gradient-enhanced approach, with a view toward macro-scale simulations. The method is then used to predict the behavior of composites whose matrix phases exhibit strain softening, and is shown to be accurate compared to unit cell simulations and experimental results. Then the convergence of the method upon strain softening, with respect to the mesh size, is demonstrated on a notched composite ply. Finally, applications consisting in a stacking plate, successively without and with a hole, are given as illustrations of the possibility of the method to be used in a multiscale framework.  相似文献   

2.
This work addresses the micro–macro modeling of composites having elasto-plastic constituents. A new model is proposed to compute the effective stress–strain relation along arbitrary loading paths. The proposed model is based on an incremental variational principle (Ortiz, M., Stainier, L., 1999. The variational formulation of viscoplastic constitutive updates. Comput. Methods Appl. Mech. Eng. 171, 419–444) according to which the local stress–strain relation derives from a single incremental potential at each time step. The effective incremental potential of the composite is then estimated based on a linear comparison composite (LCC) with an effective behavior computed using available schemes in linear elasticity. Algorithmic elegance of the time-integration of J2 elasto-plasticity is exploited in order to define the LCC. In particular, the elastic predictor strain is used explicitly. The method yields a homogenized yield criterion and radial return equation for each phase, as well as a homogenized plastic flow rule. The predictive capabilities of the proposed method are assessed against reference full-field finite element results for several particle-reinforced composites.  相似文献   

3.
均匀化方法在粘弹性多层复合材料中的应用   总被引:1,自引:0,他引:1  
主要研究了由各向同性线弹性加强体和各向同性线粘弹性基体组成的多层复合材料的问题,在已有的线弹性多层材料的均匀化方法的基础上,应用弹性一粘弹性对应原理,在Carson域中求解粘弹性多层材料的问题。通过Burgers模型表示线粘弹性基体材料,反演得到了多层材料的有效松弛模量和有效泊松比在时间域中的表达式,并且与实验结果和其他结果进行了比较。  相似文献   

4.
The micromechanics of elasto-viscoplastic composites made up of a random and homogeneous dispersion of spherical inclusions in a continuous matrix was studied with two methods. The first one is an affine homogenization approach, which transforms the local constitutive laws into fictitious linear thermo-elastic relations in the Laplace–Carson domain so that corresponding homogenization schemes can apply, and the temporal response is computed after a numerical inversion of Laplace transform. The second method is the direct numerical simulation by finite elements of a three-dimensional representative volume element of the composite microstructure. The numerical simulations carried out over different realizations of the composite microstructure showed very little scatter and thus provided – for the first time – “exact” results in the elasto-viscoplastic regime that can be used as benchmarks to check the accuracy of other models. Overall, the predictions of the affine homogenization model were excellent, regardless of the volume fraction of spheres, of the loading paths (shear, uniaxial tension and biaxial tension as well as monotonic and cyclic deformation), particularly at low strain rates. It was found, however, that the accuracy decreased systematically as the strain rate increased. The detailed information of the stress and strain microfields given by the finite element simulations was used to analyze the source of this difference, so that better homogenization methods can be developed.  相似文献   

5.
This paper deals with the prediction of the overall behavior of a class of two-phase elasto-viscoplastic composites, based on mean-field homogenization. For this, important improvements are made to the recently-proposed affine formulation. The latter theory linearizes the rate-dependent inelastic constitutive equations of each phase’s material and transforms them into fictitious linear thermo-elastic relations in the Laplace–Carson domain. The main contributions of the present work are threefold. Firstly, complete mathematical developments including a full treatment of internal variables are carried out, enabling the modeling of the response under unloading and cyclic histories. Secondly, robust and accurate computational algorithms are proposed. Thirdly, an extensive validation of the predictions against reference unit cell finite element results is conducted for a variety of materials and loadings. A good agreement between predictions and reference results is observed.  相似文献   

6.
7.
A new pressure-dependent yield function is proposed by introducing a plastic Poisson's ratio within the theoretical formulation of the plastic potential. In analogy with other classical models, an equivalent stress and an equivalent plastic strain increment are defined. Then, according to these definitions, the equivalent stress–strain curve is derived and an exponential hardening law is introduced. The advantage of the proposed formulation over alternative approaches relies in explicit closed-form expressions of the flow rules and of the plastic multiplier.  相似文献   

8.
Natural materials and structures are increasingly becoming a source of inspiration for the design novel of engineering systems. In this context, the structure of fish skin, made of an intricate arrangement of flexible plates growing out of the dermis of a majority of fish, can be of particular interest for materials such as protective layers or flexible electronics. To better understand the mechanics of these composite shells, we introduce here a general computational framework that aims at establishing a relationship between their structure and their overall mechanical response. Taking advantage of the periodicity of the scale arrangement, it is shown that a representative periodic cell can be introduced as the basic element to carry out a homogenization procedure based on the Hill-Mendel condition. The proposed procedure is applied to the specific case of the fish skin structure of the Morone saxatilis, using a computational finite element approach. Our numerical study shows that fish skin possesses a highly anisotropic response, with a softer bending stiffness in the longitudinal direction of the fish. This softer response arises from significant scale rotations during bending, which induce a stiffening of the response under large bending curvature. Interestingly, this mechanism can be suppressed or magnified by tuning the rotational stiffness of the scale-dermis attachment but is not activated in the lateral direction. These results are not only valuable to the engineering design of flexible and protective shells, but also have implications on the mechanics of fish swimming.  相似文献   

9.
An estimator for an effective permeability tensor based on one-phase incompressible flow is presented. Effective large-scale permeability tensors are well approximated by rough approximations to the fine-scale pressure. The estimator works for all kinds of heterogeneous reservoirs and is fairly independent of boundary conditions.  相似文献   

10.
It is shown that second-order homogenization of a Cauchy-elastic dilute suspension of randomly distributed inclusions yields an equivalent second gradient (Mindlin) elastic material. This result is valid for both plane and three-dimensional problems and extends earlier findings by Bigoni and Drugan [Bigoni, D., Drugan, W.J., 2007. Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. J. Appl. Mech. 74, 741–753] from several points of view: (i) the result holds for anisotropic phases with spherical or circular ellipsoid of inertia; (ii) the displacement boundary conditions considered in the homogenization procedure is independent of the characteristics of the material; (iii) a perfect energy match is found between heterogeneous and equivalent materials (instead of an optimal bound). The constitutive higher-order tensor defining the equivalent Mindlin solid is given in a surprisingly simple formula. Applications, treatment of material symmetries and positive definiteness of the effective higher-order constitutive tensor are deferred to Part II of the present article.  相似文献   

11.
A homogenization procedure to estimate the macroscopic strength of nonlinear matrix-inclusion composites with different strength characteristics of the matrix and inclusions, respectively, is presented in this paper. The strength up-scaling is formulated within the framework of the yield design theory and the linear comparison composite (LCC) approach, introduced by Ponte Castaneda (2002) and extended to frictional models by Ortega et al. (2011), which estimates the macroscopic strength of composite materials in terms of an optimally chosen linear thermo–elastic comparison composite with a similar underlying microstructure. In the paper various combinations for the underlying material behavior for the individual phases of the composite are considered: The matrix phase can be a quasi frictional material characterized either by a Drucker–Prager-type (hyperbolic) or an elliptical strength criterion, which predicts a strength limit also in hydrostatic compression, while the inclusion phase either may represent empty pores, pore voids filled with a pore fluid, rigid inclusions, or solid inclusions, whose strength characteristics also maybe described by a Drucker–Prager-type or an elliptical strength criterion. For generating the homogenized strength criterion efficiently in such general cases of matrix-inclusion composites, a novel algorithm is proposed in the paper. The validation of the proposed strength homogenization procedure for selected combinations of strength characteristics of the matrix material and the inclusions is conducted by comparisons with experimental results and alternative existing strength homogenization models.  相似文献   

12.
A solution for the overall electromechanical response of two-phase dielectric elastomer composites with (random or periodic) particulate microstructures is derived in the classical limit of small deformations and moderate electric fields. In this limit, the overall electromechanical response is characterized by three effective tensors: a fourth-order tensor describing the elasticity of the material, a second-order tensor describing its permittivity, and a fourth-order tensor describing its electrostrictive response. Closed-form formulas are derived for these effective tensors directly in terms of the corresponding tensors describing the electromechanical response of the underlying matrix and the particles, and the one- and two-point correlation functions describing the microstructure. This is accomplished by specializing a new iterative homogenization theory in finite electroelastostatics (Lopez-Pamies, 2014) to the case of elastic dielectrics with even coupling between the mechanical and electric fields and, subsequently, carrying out the pertinent asymptotic analysis.Additionally, with the aim of gaining physical insight into the proposed solution and shedding light on recently reported experiments, specific results are examined and compared with an available analytical solution and with new full-field simulations for the special case of dielectric elastomers filled with isotropic distributions of spherical particles with various elastic dielectric properties, including stiff high-permittivity particles, liquid-like high-permittivity particles, and vacuous pores.  相似文献   

13.
14.
The deformation of a composite made up of a random and homogeneous dispersion of elastic spheres in an elasto-plastic matrix was simulated by the finite element analysis of three-dimensional multiparticle cubic cells with periodic boundary conditions. “Exact” results (to a few percent) in tension and shear were determined by averaging 12 stress-strain curves obtained from cells containing 30 spheres, and they were compared with the predictions of secant homogenization models. In addition, the numerical simulations supplied detailed information of the stress microfields, which was used to ascertain the accuracy and the limitations of the homogenization models to include the nonlinear deformation of the matrix. It was found that secant approximations based on the volume-averaged second-order moment of the matrix stress tensor, combined with a highly accurate linear homogenization model, provided excellent predictions of the composite response when the matrix strain hardening rate was high. This was not the case, however, in composites which exhibited marked plastic strain localization in the matrix. The analysis of the evolution of the matrix stresses revealed that better predictions of the composite behavior can be obtained with new homogenization models which capture the essential differences in the stress carried by the elastic and plastic regions in the matrix at the onset of plastic deformation.  相似文献   

15.
Three-dimensional cubic unit cells containing 30 non-overlapping identical spheres randomly distributed were generated using a new, modified random sequential adsortion algorithm suitable for particle volume fractions of up to 50%. The elastic constants of the ensemble of spheres embedded in a continuous and isotropic elastic matrix were computed through the finite element analysis of the three-dimensional periodic unit cells, whose size was chosen as a compromise between the minimum size required to obtain accurate results in the statistical sense and the maximum one imposed by the computational cost. Three types of materials were studied: rigid spheres and spherical voids in an elastic matrix and a typical composite made up of glass spheres in an epoxy resin. The moduli obtained for different unit cells showed very little scatter, and the average values obtained from the analysis of four unit cells could be considered very close to the “exact” solution to the problem, in agreement with the results of Drugan and Willis (J. Mech. Phys. Solids 44 (1996) 497) referring to the size of the representative volume element for elastic composites. They were used to assess the accuracy of three classical analytical models: the Mori-Tanaka mean-field analysis, the generalized self-consistent method, and Torquato's third-order approximation.  相似文献   

16.
In this paper we present the admissible deformation fields and the corresponding functional setting needed for the homogenization of the non-linear equations describing the elastoplastic behavior of structures with generalized periodicity.  相似文献   

17.
An experimental investigation was conducted to determine the influence of postmold trimming and resultant edge quality on the performance of fiber-reinforced plastics (FRP) under dynamic loads. Graphite/epoxy and graphite/bismaleimide laminates were machined using three state-of-the-art industrial techniques and subjected to three-point bend impact to failure. The load load-line displacement records were used to obtain the load, bend deflection and energy absorbed to fracture. High-speed photography was also employed to identify the initiation and progression of failure and record the time dependent fracture process. From a comparison of edge quality and subsequent material performance for both polymeric composites, it was found that the impact response of FRPs is highly process dependent. In general, the load and energy absorbed to fracture decreases with increasing surface roughness. Reductions in the load and energy to the onset of fracture with degrading surface quality were as high as 20 percent. The dynamic response was also found to be dependent on the constituents, stacking sequence and impact velocity.  相似文献   

18.
19.
The determination of an effective property in composite materials necessitates the knowledge of some averaged field quantities in the constituents (like the average heat intensity or average strain) of a composite sample, which is subjected to homogeneous boundary conditions. In the generalized self-consistent scheme (GSCS) which is today a classical micromechanics model suited for the determination of the effective properties of matrix-based composites, those average quantities are estimated by using an auxiliary configuration in which a particulate phase is first surrounded by some matrix material and then embedded in the effective medium. In the present study, we revisit the GSCS both for two- and multi-phase matrix-based composites containing spherical particles, and clarify aspects related to the volume fractions of the particle core and matrix shell within the composite element which is embedded in the effective medium. The contribution of this study is believed to be mainly on the conceptual side and resides in a new formulation of the method in which the embedding volume fractions are determined in the course of the analysis by means of some fundamental relations on the averaged fields. The study is carried out in thermal conduction and elasticity and contains new results on the effective shear modulus of multi-phase composites.  相似文献   

20.
For the accurate prediction of the effective thermal conductivities of the twisted multi-filamentary superconducting strand, a two-step homogenization method is adopted. Based on the distribution of filaments, the superconducting strand can be decomposed into a set of concentric cylinder layers. Each layer is a two-phase composite composed of the twisted filaments and copper matrix. In the first step of homogenization, the representative volume element (RVE) based finite element (FE) homogenization method with the periodic boundary condition (PBC) is adopted to evaluate the effective thermal conductivities of each layer. In the second step of homogenization, the generalized self-consistent method is used to obtain the effective thermal conductivities of all the concentric cylinder layers. The accuracy of the developed model is validated by comparing with the local and full-field FE simulation. Finally, the effects of the twist pitch on the effective thermal conductivities of twisted multi-filamentary superconducting strand are studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号