共查询到20条相似文献,搜索用时 15 毫秒
1.
Wenfang Xie 《Physica B: Condensed Matter》2011,406(9):1805-1808
The linear and nonlinear optical properties of parabolic quantum dots in which two electrons interact with each other through both coulomb repulsion and longitudinal-optical phonon are studied by using the matrix diagonalization method. With typical semiconducting GaAs-based materials, the linear, third-order nonlinear, total optical absorption coefficients and the optical refractive index have been examined. The effects of different electron-phonon coupling strengths on the linear and nonlinear optical properties are also predicted. 相似文献
2.
Shi-Hua Chen Jing-Lin Xiao 《Physica E: Low-dimensional Systems and Nanostructures》2008,40(9):2941-2944
A Landau–Pekar variational theory is employed to obtain the ground and the first excited state binding energies of an electron bound to a Coulomb impurity in a polar semiconductor quantum dot (QD) with parabolic confinement in both two and three dimensions. It is found that the binding energy increase with increasing the Coulomb binding parameter and increase with the decrease in size of the QD and is much more pronounced with decreasing dimensionality. 相似文献
3.
Optical absorption coefficients and refractive index changes associated with intersubband transition of an off-center hydrogenic impurity in a spherical quantum dot (QD) with Gaussian confinement potential are theoretically investigated. Our results show that the optical absorption coefficients in a spherical QD are 2–3 orders of magnitude higher than those in quantum wells and are 2–3 orders smaller than those in a disk-like QD. It is found that the optical absorptions and the optical refractive index are strongly affected not only by the confinement barrier height, dot radius but also by the position of the impurity. 相似文献
4.
Wenfang Xie 《Optics Communications》2011,284(7):1872-42
The nonlinear optical properties of a D− system confined in a spherical quantum dot represented by a Gaussian confining potential are studied. The great advantage of our methodology is that the model potential possesses the finite height and range. Calculations are carried out by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. We calculate the linear, third-order nonlinear and total optical absorption coefficients under the density matrix formalism. Numerical results for GaAs − Ga1 − xAlxAs QDs are presented. Our results show that the optical absorption coefficients in a spherical QD are much larger than their values for GaAs quantum wells. It is found that optical absorptions are strongly affected not only the confinement barrier height, dot radius, the electron-impurity interaction but also the position of the impurity. 相似文献
5.
Wenfang Xie 《Optics Communications》2010,283(7):1381-2861
An exciton in a disc-like quantum dot (QD) with the parabolic confinement, under applied electric field, is studied within the framework of the effective-mass approximation. Both the electric field and the confinement effects on the transition energy and the oscillator strength were investigated. Based on the computed energies and wave functions, the linear, the third-order nonlinear and the total optical absorption coefficients were also calculated. We found that the optical absorption coefficients with considering excitonic effects are stronger than those without considering excitonic effects and the absorption peak will move to the right side induced by the electron-hole interaction, which shows an excitonic effect blue-shift of the resonance in QDs. The applied electric field may affect either the size or the position of absorption peaks of excitons. However, the applied electric field may only affect the size of absorption peaks of an electron-hole pair without considering excitonic effects. It is very important to take excitonic effects into account when we study the optical absorption for disc-like QDs. We may observe the excitonic effect induced by the external electric field. 相似文献
6.
Wenfang Xie 《Optics Communications》2011,284(19):4756-4760
In this paper, we studied the nonlinear optical properties of a negative donor center (D−) in a disk-like quantum dot (QD) with a Gaussian confining potential. Calculations are carried out by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. A detailed investigation of the linear, third-order nonlinear, total optical absorptions and refractive index changes has been carried out for the D− QD and the D0 QD. The linear, third-order nonlinear, total optical absorptions and refractive indices have been examined for a double-electron QD with and without impurity. Our results show that the optical absorption coefficients and refractive indices in a disk-like QD are much larger than their values for quantum wells and spherical QDs and the nonlinear optical properties of QDs are strongly affected not only with the confinement barrier height, dot radius, the number of electrons but also the electron-impurity interaction. 相似文献
7.
We investigate the linear and nonlinear optical properties of a donor impurity confined by a two-dimensional pseudoharmonic potential both including harmonic dot and antidot potentials in the presence of a strong magnetic field. Calculations are made by using the perturbation method and the compact density-matrix approach within the effective-mass approximation. Based on the computed energies and wave functions, the linear, third-order nonlinear and total optical absorption coefficients as well as the refractive index changes have been examined. The results are presented as a function of the incident photon energy for the different values of the chemical potential of the electron gas and the zero point of the pseudoharmonic potential. The results show that the optical properties of a donor impurity in a two-dimensional pseudoharmonic QD are strongly affected by the zero point of the pseudoharmonic potential, the chemical potential of the electron gas and the Coulomb interaction. 相似文献
8.
Wenfang Xie 《Journal of luminescence》2011,131(5):943-4599
An exciton in a disc-like quantum dot (QD) with the parabolic confinement, under applied electric field, is studied within the framework of the effective-mass approximation. The nonlinear optical rectification between the ground and the first-excited states has been examined through the computed energies and wave functions in details for the excitons. The results show that the optical rectification susceptibility obtained in a disc-like QD reach the magnitude of 10−2 m/V, which is 3-4 orders of magnitude higher than in one-dimensional QDs. It is found that the second-order nonlinear optical properties of exciton states in a QD are strongly affected by the confinement strength and the electric field. 相似文献
9.
Shi-Hua Chen 《Physica B: Condensed Matter》2011,406(10):2033-2037
A variational approach is employed to obtain the ground and the first excited state binding energies of an electron bound to a hydrogenic impurity in a polar semiconductor quantum dot (QD) with symmetric parabolic confinement in both two and three-dimensions. We perform calculations for the entire range of the electron-phonon coupling constant and the Coulomb binding parameter and for arbitrary confinement length. It is found that the binding energy of ground and first excited state is larger in a two-dimension (2D) dot than in a three-dimension (3D) dot and this trend is more pronounced with the increase of the electron-phonon coupling constant for the same value of the Coulomb binding parameter and confinement length. Furthermore, the ground and the first excited state binding energy increases with increasing the Coulomb binding parameter in both 2D and 3D QDs for the same electron-phonon coupling constant. 相似文献
10.
An investigation of the nonlinear optical rectification of a hydrogenic impurity, which is in a two-dimensional disc-like quantum dot (QD) with parabolic confinement potential, has been performed by using the perturbation method in the effective mass approximation. Both the electric field and the confinement effects on the energy are investigated in detail. The results are presented as a function of the incident photon energy for the different values of the confinement strength and the electric field. It is found that the nonlinear optical properties of hydrogenic impurity states in a disc-like QD are strongly affected by the confinement strength and the electric field. 相似文献
11.
A detailed investigation of the nonlinear optical properties of the (D+, X) complex in a disc-like quantum dot (QD) with the parabolic confinement, under applied magnetic field, has been carried by using the perturbation method and the compact density-matrix approach. The linear and nonlinear optical absorption coefficients between the ground (L = 0) and the first excited state (L = 1) have been examined based on the computed energies and wave functions. The competition between the confinement and correlation effects on the one hand, and the magnetic field effects on the other hand, is also discussed. The results show that the confinement strength of QDs and the intensity of the illumination have drastic effects on the nonlinear optical properties. In addition, we note that the absorption coefficients of an exciton in QDs depend strongly on the impurity but weakly on the magnetic field. Furthermore, the light and heavy hole excitons should be taken into account when we study the optical properties of an exciton in a disc-like QD. 相似文献
12.
This paper reports that the ground-state energy of polaron was obtained with strong electron-LO-phonon coupling by using a variational method of the Pekar type in a parabolic quantum dot. Quantum transition is occurred in the quantum system due to the electron-phonon interaction and the influence of temperature. That is the polaron transit from the ground-state to the first-excited state after absorbing a LO-phonon and it causes the change of the polaron lifetime. Numerical calculations are performed and the results illustrate that the ground-state lifetime of the polaron will increase with increasing the ground-state energy of polaron and decrease with increasing the electron-LO-phonon coupling strength, the confinement length of the quantum dot and the temperature. 相似文献
13.
Optical absorption and refractive index of a donor impurity in a three-dimensional quantum pseudodot
The optical absorption and refractive index of a donor impurity confined by a three-dimensional quantum pseudodot are studied using the matrix diagonalization method within the effective-mass approximation. The great advantage of our methodology is that it enables us to tune confinement strength and regime by varying two parameters in the model potential. Based on the computed energies and wave functions, the linear, third-order nonlinear and total optical absorption coefficients as well as the refractive index changes have been examined. The results are presented as a function of the incident photon energy for the different values of the chemical potential of the electron gas and the zero point of the pseudoharmonic potential. We find that the larger optical nonlinearity will be obtained by varying the zero point of the pseudoharmonic potential compared to the chemical potential of electron gas. 相似文献
14.
Wenfang Xie 《Physics letters. A》2011,375(8):1213-1217
In this study, a detailed investigation of the nonlinear optical properties of the (D+,X) complex in a disc-like parabolic quantum dot has been carried out by using the matrix diagonalization method and the compact density-matrix approach. First, the numeric calculations and analysis of the oscillator strength of intersubband quantum transition from the ground state into the first excited state at the varying confinement frequency have been performed. Second, the linear, third-order nonlinear, and total absorption coefficients and refractive indices have been investigated. It is observed that the confinement frequency of QDs and the intensity of the illumination have drastic effects on the nonlinear optical properties. In addition, we find that all kinds of absorption coefficients and refractive indices of an exciton in QDs shift to lower energies and their peak values have considerably decreases induced by the impurity. 相似文献
15.
In this paper, we studied the effects of an electric field on a hydrogenic impurity confined in a spherical parabolic quantum dot using nondegenerate and degenerate perturbation methods. The binding energies of the ground and three low-excited states are calculated as a function of the confinement strength and as a function of the intensity of an applied electric field. Moreover, we computed the oscillator strength and the second-order nonlinear optical rectification coefficient based on the computed energies and wave functions. The results show that the electric and optical properties of hydrogenic impurity states are strongly affected by the confinement strength and the applied electric field. 相似文献
16.
Wenfang Xie 《Physica B: Condensed Matter》2011,406(14):2858-2861
We have studied the optical absorption of an exciton and its refractive index in a disc-like quantum dot, taking into account of the confined longitudinal optical (LO) phonons. Calculations are performed in the framework of the effective-mass approximation using the compact density-matrix approach. With typical semiconducting GaAs materials, the linear, third-order nonlinear, total optical absorption coefficients and refractive index changes with and without considering the exciton-phonon interaction have been examined. By comparing the polaron effect of the two-electron quantum dot, it is found that the corrections due to the LO phonons on the optical absorption and refractive index are very important and cannot be ignored. 相似文献
17.
Wenfang Xie 《Physica B: Condensed Matter》2012,407(12):2329-2333
A investigation of the linear and nonlinear optical properties for intersubband electronic transitions associated with a biexciton in a quantum dot has been performed by using the method of few-body physics. The optical absorption coefficients and the refractive index changes have been examined based on the computed energies and wave functions. It is over two orders of magnitude higher than that obtained in an exciton quantum dot. The results show that the optical absorption saturation intensity can be controlled by the confinement potential frequency and the relaxation time. 相似文献
18.
We have investigated the influence of an external electric field on the binding energies and polaronic shifts of the ground and some first few excited states of a hydrogenic impurity in a spherical quantum dot by taking into account the image charge effect. By using Landau–Pekar variational method the general analytical expression is obtained for the impurity bound-polaron energies. It has been numerically identified the conditions (electric field, nominal radius of quantum dot, etc.) in which the bound-polaron states can be existence in GaAs quantum dot. We have shown that the polaronic shifts in the binding energy of 1s-like state are the same in cases with and without image charge effect while they for 2s-like state are not coincide and have different monotonic behavior versus confinement potential. Electron–phonon interaction lifts the degeneracy of the 2px-, 2py-, and 2pz-like states of a donor impurity and reduces their binding energies. 相似文献
19.
Within the framework of the effective-mass approximation, we have calculated the combined effects of hydrostatic pressure, temperature and applied electric field on an exciton confined in a typical GaAs/Ga0.7Al0.3As quantum dot. Several inputs of the confinement potential, hydrostatic pressure, temperature, and applied electric field have been considered. Our findings suggest that (1) the effect of the confinement strength is dominant over the electric field effect, (2) the oscillator strength is an increasing function of the hydrostatic pressure, (3) the absorption coefficients and energy difference depend strongly on the hydrostatic pressure but weakly on the temperature, (4) the absorption coefficients with considering excitonic effects are stronger than those without considering excitonic effects and the absorption peak will move to the right side induced by the electron-hole interaction, (5) the applied electric field may effect either the size or the position of absorption peaks of excitons. 相似文献
20.
By considering usual matrix procedures we examine how the exciton affects the nonlinear optical properties of 3-D semiconductor GaAs quantum dot. We calculate the third-order optical susceptibility of the GaAs (well) AlxGaAs1?x (barrier), and consequently the refractive index and the absorption coefficient. By increasing the Al content (x) in barrier material, carrier relaxation time is enhanced and the susceptibility peaks and their positions showed a blue shift, which agrees with the existing experimental work. For an anisotropic QD, the third-order nonlinear absorption coefficient depends strongly on the quantum dot width. 相似文献