首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A complete 3-D crystal plasticity finite element method (CPFEM) that considered both crystallographic slip and deformation twinning was applied to simulate the spatial distribution of the relative amount of slip and twin activities in a polycrystalline AZ31 Mg alloy during in-plane compression. A microstructure mapping technique that considered the grain size distribution and microtexture measured by electron backscatter diffraction (EBSD) technique was used to create a statistically representative 3-D microstructure for the initial configuration. Using a 3-D Monte Carlo method, a 3-D digital microstructure that matched the experimentally measured grain size distribution was constructed. Crystallographic orientations obtained from the EBSD data were assigned on the 3-D digital microstructure to match the experimentally measured misorientation distribution. CPFEM captured the heterogeneity of the stress concentration as well as the slip and twin activities of a polycrystalline AZ31 Mg alloy during in-plane compression.  相似文献   

2.
A crystal plasticity finite element code is developed to model lattice strains and texture evolution of HCP crystals. The code is implemented to model elastic and plastic deformation considering slip and twinning based plastic deformation. The model accounts for twinning reorientation and growth. Twinning, as well as slip, is considered to follow a rate dependent formulation. The results of the simulations are compared to previously published in situ neutron diffraction data. Experimental results of the evolution of the texture and lattice strains under uniaxial tension/compression loading along the rolling, transverse, and normal direction of a piece of rolled Zircaloy-2 are compared with model predictions. The rate dependent formulation introduced is capable of correctly capturing the influence of slip and twinning deformation on lattice strains as well as texture evolution.  相似文献   

3.
The present paper is concerned with the analysis of the deformation systems in single crystal magnesium at the micro-scale and with the resulting texture evolution in a polycrystal representing the macroscopic mechanical response. For that purpose, a variationally consistent approach based on energy minimization is proposed. It is suitable for the modeling of crystal plasticity at finite strains including the phase transition associated with deformation-induced twinning. The method relies strongly on the variational structure of crystal plasticity theory, i.e., an incremental minimization principle can be derived which allows to determine the unknown slip rates by computing the stationarity conditions of a (pseudo) potential. Phase transition associated with twinning is modeled in a similar fashion. More precisely, a solid-solid phase transition corresponding to twinning is assumed, if this is energetically favorable. Mathematically speaking, the aforementioned transition can be interpreted as a certain rank-one convexification. Since such a scheme is computationally very expensive and thus, it cannot be applied to the analysis of a polycrystal, a computationally more efficient approximation is elaborated. Within this approximation, the deformation induced by twinning is decomposed into the reorientation of the crystal lattice and simple shear. The latter is assumed to be governed by means of a standard Schmid-type plasticity law (pseudo-dislocation), while the reorientation of the crystal lattice is considered, when the respective plastic shear strain reaches a certain threshold value. The underlying idea is in line with experimental observations, where dislocation slip within the twinned domain is most frequently seen, if the twin laminate reaches a critical volume. The resulting model predicts a stress-strain response in good agreement with that of a rank-one convexification method, while showing the same numerical efficiency as a classical Taylor-type approximation. Consequently, it combines the advantages of both limiting cases. The model is calibrated for single crystal magnesium by means of the channel die test and finally applied to the analysis of texture evolution in a polycrystal. Comparisons of the predicted numerical results to their experimental counterparts show that the novel model is able to capture the characteristic mechanical response of magnesium very well.  相似文献   

4.
A new approach to modeling crystallographic texture evolution in Equal Channel Angular Extrusion (ECAE) is presented in this paper. The proposed approach utilizes an elastic–viscoplastic single crystal constitutive model implemented in a finite element framework. A representative volume element of the polycrystal is subjected to boundary conditions that simulate the approximate deformation history experienced by different regions of the sample (at different through-thickness depths) in both Route A and Route C processing. The proposed approach aims to capture the influence of the complex interactions that ensue among the constituent individual crystals of a polycrystal in controlling the texture evolution in the sample, while capturing the boundary conditions inherent to ECAE deformation. The predictions from the proposed approach are compared against previously reported experimental measurements in ECAE of copper. It is observed that the proposed approach provides significantly better agreement with the measurements when compared against previously reported model predictions.  相似文献   

5.
A crystal-plasticity finite-element analysis of the loading-unloading process under uniaxial tension of a rolled magnesium alloy sheet was carried out, and the mechanism of the inelastic response during unloading was examined, focusing on the effects of basal and nonbasal slip systems. The prismatic and basal slip systems were mainly activated during loading, but the activation of the prismatic slip systems was more dominant. Thus the overall stress level during loading was determined primarily by the prismatic slip systems. The prismatic slip systems were hardly activated during unloading because the stress level was of course lower than that during loading. On the other hand, because the strength of the basal slip systems was much lower than that of the prismatic slip systems, the basal slip systems would be easily activated under the stress level during unloading in the opposite direction when their Schmid’s resolved shear stresses changed signs because of the inhomogeneity of the material. These results indicated that one explanation for the inelastic behavior during unloading was that the basal slip systems were primarily activated owing to their low strengths compared to that of the prismatic slip systems. Numerical tests using the sheets with random orientations and with the more pronounced texture were conducted to further examine the mechanism.  相似文献   

6.
A new dislocation-based model for low cycle fatigue in fcc metals at a length scale smaller than the feature size of the dislocation structures is presented. It uses the crystal plasticity finite element method and dislocation densities as internal variables. Equations for the dipole distance distribution, for the double cross slip mechanism and a new dislocation multiplication law are introduced, which can predict the emergence of vein and channel structures starting from a randomly perturbed dislocation distribution. The characteristics of these structures in copper and aluminium, as well as the mechanical properties, are compared with experiments. Compared with existing density-based theories, the capability to reproduce dislocation patterning is a significant step forward.  相似文献   

7.
Twinning has been incorporated into a crystal plasticity model with the regularized Schmid law. In order to account for the appearance of twin-related orientations, a new probabilistic twin reorientation scheme that maintains the number of reoriented grains consistent with the accumulated deformation by twinning within the polycrystalline element, has been developed. A hardening rule describing slip–twin interactions has been also proposed. Model predictions concerning material response and texture evolution have been analyzed for fcc materials of low stacking fault energy.  相似文献   

8.
Yielding of magnesium: From single crystal to polycrystalline aggregates   总被引:2,自引:0,他引:2  
Hexagonal close-packed (hcp) metals show a deformation behavior, which is quite different from that of materials with cubic crystalline structure. As a consequence, rolled or extruded products of magnesium and its alloys exhibit a strong anisotropy and an unlike yielding in tension and compression. In this work, the microstructural mechanisms of deformation in pure magnesium are modeled by visco-plastic constitutive equations of crystal plasticity. Single crystals and textured polycrystals are analyzed numerically. By means of virtual mechanical tests of representative volume elements mesoscopic yield surfaces are generated. The linking of micro- and mesoscale provides a procedure for the simulation of the yielding and hardening behavior of arbitrarily textured solids with hcp structure such as extruded bars or rolled plates.  相似文献   

9.
Two stochastic mean-field polycrystal plasticity methods   总被引:1,自引:0,他引:1  
In this work, we develop two mean-field polycrystal plasticity models in which the crystal velocity gradients Lc are approximated stochastically. Through comprehensive CPFEM analyses of an idealized tantalum polycrystal, we verify that the Lc tend to follow a normal distribution and surmise that this is due to the crystal interactions. We draw on these results to develop the stochastic Taylor model (STM) and the stochastic no-constraints model (SNCM), which differ in the manner in which the crystal strain rates are prescribed. Calibration and validation of the models are performed using data from tantalum compression experiments. Both models predict the compression textures more accurately than the fully constrained model (FCM), and the SNCM predicts them more accurately than the STM. The STM is extremely computationally efficient, only slightly more expensive than the FCM, while the SNCM is three times more computationally expensive than the STM.  相似文献   

10.
11.
We present a systematic investigation on the strain hardening and texture evolution in high manganese steels where twinning induced plasticity (TWIP) plays a significant role for the materials' plastic deformation. Motivated by the stress–strain behavior of typical TWIP steels with compositions of Fe, Mn, and C, we develop a mechanistic model to explain the strain-hardening in crystals where deformation twinning dominates the plastic deformation. The classical single crystal plasticity model accounting for both dislocation slip and deformation twinning are then employed to simulate the plastic deformation in polycrystalline TWIP steels. While only deformation twinning is activated for plasticity, the simulations with samples composed of voronoi grains cannot fully capture the texture evolution of the TWIP steel. By including both twinning deformation and dislocation slip, the model is able to capture both the stress–strain behaviors and the texture evolution in Fe–Mn–C TWIP steel in different boundary-value problems. Further analysis on the strain contributions by both mechanisms suggests that deformation twinning plays the dominant role at the initial stage of plasticity in TWIP steels, and dislocation slip becomes increasingly important at large strains.  相似文献   

12.
Lightweight magnesium alloys, such as AZ31, constitute alternative materials of interest for many industrial sectors such as the transport industry. For instance, reducing vehicle weight and thus fuel consumption can actively benefit the global efforts of the current environmental industry policies. To this end, several research groups are focusing their experimental efforts on the development of advanced Mg alloys. However, comparatively little computational work has been oriented towards the simulation of the micromechanisms underlying the deformation of these metals. Among them, the model developed by Staroselsky and Anand [Staroselsky, A., Anand, L., 2003. A constitutive model for HCP materials deforming by slip and twinning: application to magnesium alloy AZ31B. International Journal of Plasticity 19 (10), 1843–1864] successfully captured some of the intrinsic features of deformation in Magnesium alloys. Nevertheless, some deformation micromechanisms, such as cross-hardening between slip and twin systems, have been either simplified or disregarded. In this work, we propose the development of a crystal plasticity continuum model aimed at fully describing the intrinsic deformation mechanisms between slip and twin systems. In order to calibrate and validate the proposed model, an experimental campaign consisting of a set of quasi-static compression tests at room temperature along the rolling and normal directions of a polycrystalline AZ31 rolled sheet, as well as an analysis of the crystallographic texture at different stages of deformation, has been carried out. The model is then exploited by investigating stress and strain fields, texture evolution, and slip and twin activities during deformation. The flexibility of the overall model is ultimately demonstrated by casting light on an experimental controversy on the role of the pyramidal slip 〈c + a〉 versus compression twinning in the late stage of polycrystalline deformation, and a failure criterion related to basal slip activity is proposed.  相似文献   

13.
Metals and alloys with hexagonal close packed (HCP) crystal structures can undergo twinning in addition to dislocation slip when loaded mechanically. The complexity of the plastic response and the limited extent of twinning are impediments to their room-temperature formability and thus their widespread adoption. In order to exploit the unusual deformation characteristics of twinning sheet materials in designing novel forming operations, a practical plane stress material model for finite element implementation was sought. Such a model, TWINLAW, has been constructed based on three phenomenological deformation modes for Mg AZ31B: S (slip), T (twinning), and U (untwinning). The modes correspond to three testing regimes: initial in-plane tension (from the annealed state), initial in-plane compression, and in-plane tension following compression, respectively. A von Mises yield surface with initial non-zero back stress was employed to account for plastic yielding asymmetry, with evolution according to a novel isotropic and nonlinear kinematic hardening model. Texture and its evolution were represented throughout deformation using a weighted discrete probability density function of c-axis orientations. The orientation of c-axes evolves with twinning or untwinning using explicit rules incorporated in the model.  相似文献   

14.
Micromechanical models aimed at simulating deformation textures and resulting plastic anisotropy need to incorporate local plastic strain heterogeneities arising from grain interactions for better predictions. The ALAMEL model [Van Houtte, P., Li, S., Seefeldt, M., Delannay, L. 2005. Deformation texture prediction: from the Taylor model to the advanced Lamel model. Int. J. Plasticity 21, 589–624], is one of the models in which the heterogeneous nature of plastic deformation in metals is introduced by accounting for the influence of a grain boundary on the cooperative deformation of adjacent grains. This is achieved by assuming that neighbouring grains undergo heterogeneous shear rates parallel to the grain boundary. The present article focuses on understanding the plastic deformation fields near the grain boundaries and the influence of grain interaction on intra-grain deformations. Crystal Plasticity Finite Element Method (CPFEM) is employed on a periodic unit cell consisting of four grains discretised into a large number of elements. A refined study of the local variation of strain rates, both along and perpendicular to the grain boundaries permits an assessment of the assumptions made in the ALAMEL model. It is shown that the ALAMEL model imbibes the nature of plastic deformation at the grain boundaries very well. However, near triple junctions, the influence of a third grain induces severe oscillations of the stress tensor, reflecting a singularity. According to CPFEM, such singularity can lead to grain subdivision by the formation of new boundaries originating at the triple junction.  相似文献   

15.
16.
In this paper, a constitutive framework based on a rate-dependent crystal plasticity theory is employed to simulate the large strain deformation phenomena in hexagonal closed-packed (HCP) metals such as magnesium. The new framework is incorporated into in-house codes. Simulations are performed using the new crystal plasticity model in which crystallographic slip and deformation twinning are the principal deformation mechanisms. Simulations of various stress states (uniaxial tension, uniaxial compression and the so-called ring hoop tension test) for the magnesium alloy AM30 are performed and the results are compared with experimental observations of specimens deformed at 200 °C. Numerical simulations of forming limit diagrams (FLDs) are also performed using the Marciniak–Kuczynski (M–K) approach. With this formulation, the effects of crystallographic slip and deformation twinning on the FLD can be assessed.  相似文献   

17.
The mechanical response of engineering materials evaluated through continuum fracture mechanics typically assumes that a crack or void initially exists, but it does not provide information about the nucleation of such flaws in an otherwise flawless microstructure. How such flaws originate, particularly at grain (or phase) boundaries is less clear. Experimentally, “good” vs. “bad” grain boundaries are often invoked as the reasons for critical damage nucleation, but without any quantification. The state of knowledge about deformation at or near grain boundaries, including slip transfer and heterogeneous deformation, is reviewed to show that little work has been done to examine how slip interactions can lead to damage nucleation. A fracture initiation parameter developed recently for a low ductility model material with limited slip systems provides a new definition of grain boundary character based upon operating slip and twin systems (rather than an interfacial energy based definition). This provides a way to predict damage nucleation density on a physical and local (rather than a statistical) basis. The parameter assesses the way that highly activated twin systems are aligned with principal stresses and slip system Burgers vectors. A crystal plasticity-finite element method (CP-FEM) based model of an extensively characterized microstructural region has been used to determine if the stress–strain history provides any additional insights about the relationship between shear and damage nucleation. This analysis shows that a combination of a CP-FEM model augmented with the fracture initiation parameter shows promise for becoming a predictive tool for identifying damage-prone boundaries.  相似文献   

18.
We present a multiscale model for anisotropic, elasto-plastic, rate- and temperature-sensitive deformation of polycrystalline aggregates to large plastic strains. The model accounts for a dislocation-based hardening law for multiple slip modes and links a single-crystal to a polycrystalline response using a crystal plasticity finite element based homogenization. It is capable of predicting local stress and strain fields based on evolving microstructure including the explicit evolution of dislocation density and crystallographic grain reorientation. We apply the model to simulate monotonic mechanical response of a hexagonal close-packed metal, zirconium (Zr), and a body-centered cubic metal, niobium (Nb), and study the texture evolution and deformation mechanisms in a two-phase Zr/Nb layered composite under severe plastic deformation. The model predicts well the texture in both co-deforming phases to very large plastic strains. In addition, it offers insights into the active slip systems underlying texture evolution, indicating that the observed textures develop by a combination of prismatic, pyramidal, and anomalous basal slip in Zr and primarily {110}〈111〉 slip and secondly {112}〈111〉 slip in Nb.  相似文献   

19.
The role of microstructure in the dynamic deformation and fracture of a dual phase, polycrystalline tungsten alloy under high-rate impact loading is investigated via experiments and modeling. The material studied consists of pure tungsten crystals embedded in a ductile binder alloy comprised of tungsten, nickel, and iron. The tungsten crystals are elongated in a preferred direction of extrusion during processing. Plate impact tests were conducted on samples oriented either perpendicular or parallel to the extrusion direction. Spatially resolved interferometric data from these tests were used to extract wave propagation behavior and spall strength dependent upon position in the sample microstructure. Finite element simulations of impact and spall in digitally reproduced microstructural geometries were conducted in parallel with the experiments. Finite deformation crystal plasticity theory describes the behavior of the pure tungsten and binder phases, and a stress- and temperature-based cohesive zone model captures fracture at grain and phase boundaries in the microstructure. In results from both experiments and modeling, the grain orientations affect the free-surface velocity profile and spall behavior. Some aspects of distributions of free-surface velocity and spall strength among different microstructure configurations are qualitatively similar between experimental and numerical results, while others are not as a result of differing scales of resolution and modeling assumptions. Following a comparison of experimental and numerical results for different microstructures, intergranular fracture is identified as an important mechanism underlying the spall event.  相似文献   

20.
The paper presents new continuous and discrete variational formulations for the homogenization analysis of inelastic solid materials undergoing finite strains. The point of departure is a general internal variable formulation that determines the inelastic response of the constituents of a typical micro-structure as a generalized standard medium in terms of an energy storage and a dissipation function. Consistent with this type of finite inelasticity we develop a new incremental variational formulation of the local constitutive response, where a quasi-hyperelastic micro-stress potential is obtained from a local minimization problem with respect to the internal variables. It is shown that this local minimization problem determines the internal state of the material for finite increments of time. We specify the local variational formulation for a distinct setting of multi-surface inelasticity and develop a numerical solution technique based on a time discretization of the internal variables. The existence of the quasi-hyperelastic stress potential allows the extension of homogenization approaches of finite elasticity to the incremental setting of finite inelasticity. Focussing on macro-deformation-driven micro-structures, we develop a new incremental variational formulation of the global homogenization problem for generalized standard materials at finite strains, where a quasi-hyperelastic macro-stress potential is obtained from a global minimization problem with respect to the fine-scale displacement fluctuation field. It is shown that this global minimization problem determines the state of the micro-structure for finite increments of time. We consider three different settings of the global variational problem for prescribed displacements, non-trivial periodic displacements and prescribed stresses on the boundary of the micro-structure and develop numerical solution methods based on a spatial discretization of the fine-scale displacement fluctuation field. Representative applications of the proposed minimization principles are demonstrated for a constitutive model of crystal plasticity and the homogenization problem of texture analysis in polycrystalline aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号