首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation of nanomolar levels of iron(II) with oxygen has been studied in NaCl solutions as a function of temperature (0 to 50?°C), ionic strength (0.7 to 5.6 mol?kg?1), pH (6 to 8) and concentration of added NaHCO3 (0 to 10 mmol?kg?1). The results have been fitted to the overall rate equation: $$\mathrm{d}\mbox{[Fe(II)]}/\mathrm{d}t=-k_{\mathrm{app}}\mbox{[Fe(II)]}[\mbox{O}_{2}]$$ The values of k app have been examined in terms of the Fe(II) complexes with OH? and CO 3 2? . The overall rate constants are given by: $$k_{\mathrm{app}}=\alpha_{\mathrm{Fe}2+}k_{\mathrm{Fe}}+\alpha_{\mathrm{Fe(OH)}+}k_{\mathrm{Fe(OH)}+}+\alpha_{\mathrm{Fe(OH)}2}k_{\mathrm{Fe(OH)}2}+\alpha_{\mathrm{Fe(CO3)}2}k_{\mathrm{Fe(CO3)}2}$$ where α i is the molar fraction and k i is the rate constant of species i. The individual rate constants for the species of Fe(II) interacting with OH? and CO 3 2? have been fitted by equations of the form: $$\begin{array}{l}\ln k_{\mathrm{Fe}2+}=21.0+0.4I^{0.5}-5562/T\\[6pt]\ln k_{\mathrm{FeOH}}=17.1+1.5I^{0.5}-2608/T\\[6pt]\ln k_{\mathrm{Fe(OH)}2}=-6.3-0.6I^{0.5}+6211/T\\[6pt]\ln k_{\mathrm{Fe(CO3)}2}=31.4+5.6I^{0.5}-6698/T\end{array}$$ These individual rate constants can be used to estimate the rates of oxidation of Fe(II) over a large range of temperatures (0 to 50?°C) in NaCl brines (I=0 to 6 mol?kg?1) with different levels of OH? and CO 3 2? .  相似文献   

2.
The activity coefficients of HCl (γA) in aqueous mixtures of HCl and NdCl3 were determined by the electromotive-force (emf) measurement of cells without liquid junctions of the type:
((A))
The experiments were carried out at nine constant total ionic strengths of I = 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1.0, 1.5, and 2.0 mol-kg−1, and at 11 temperatures from 5 to 55 C, but at I = 2.0 mol-kg−1 the experimental temperatures were 5, 25 and 55 C only. Harned's rule was used to represent all 728 experimental emf data points at the experimental ionic strengths and temperatures. The quadratic terms in the Harned equations for the values of logγA were required for a good fit to the emf data, indicating the significance of ternary interactions at the experimental ionic strengths. The adjoining paper deals with the application of the Pitzer ion-interaction theory to estimate the Pitzer's mixing parameters for binary and ternary interactions.  相似文献   

3.
B-Nb2O5 was recrystallized from commercially available oxide, and XRD analyses indicated that it is stable in contact with solutions over the pH range 0 to 9, whereas solid polyniobates such as Na8Nb6O19?13H2O(s) appear to predominate at pH>9. Solubilities of the crystalline B-Nb2O5 were determined in five NaClO4 solutions (0.1≤I m /mol?kg?1≤1.0) over a wide pH range at (25.0±0.1)?°C and at 0.1 MPa. A limited number of measurements were also made at I m =6.0 mol?kg?1, whereas at I m =1.0 mol?kg?1 the full range of pH was also covered at (10, 50 and 70)?°C. The pH of these solutions was fixed using either HClO4 (pH≤4) or NaOH (pH≥10) and determined by mass balance, whereas the pH on the molality scale was measured in buffer mixtures of acetic acid?+?acetate (4≤pH≤6), Bis-Tris (pH≈7), Tris (pH≈8) and boric acid?+?borate (pH≈9). Treatment of the solubility results indicated the presence of four species, \(\mathrm{Nb(OH)}_{n}^{5-n}\) (where n=4–7), so that the molal solubility quotients were determined according to:
$0\mathrm{.5Nb}_{2}\mathrm{O}_{5}\mathrm{(cr)+0}\mathrm{.5(2}n-5\mathrm{)H}_{2}\mathrm{O(l)}_{\leftarrow}^{\to}\mathrm{Nb(OH)}_{n}^{5-n}+(n-5)\mathrm{H}^{+}\quad (n=4\mbox{--}7)$
and were fitted empirically as a function of ionic strength and temperature, including the appropriate Debye-Hückel term. A Specific Interaction Theory (SIT) approach was also attempted. The former approach yielded the following values of log?10 K sn (infinite dilution) at 25?°C: ?(7.4±0.2) for n=4; ?(9.1±0.1) for n=5; ?(14.1±0.3) for n=6; and ?(23.9±0.6) for n=7. Given the experimental uncertainties (2σ), it is interesting to note that the effect of ionic strength only exceeded the combined uncertainties significantly in the case of log?10 K s6 to I m =1.0 mol?kg?1, such that these values may be of use by defining their magnitudes in other media. Values of Δ f G o, Δ f H o, S o and \(C_{p}^{\mathrm{o}}\) (298.15 K, 0.1 MPa) for each hydrolysis product were calculated and tabulated.
  相似文献   

4.
Equations are derived, in a general form, and valid in the range 0.5??C??3 mol?L?1, for the calculation of the total potential anomalies (??E H) for emf cells where the formation of iso-polymolybdates takes place, according to the equilibria: $$p \mathrm{H}^{+} (h) + q \mathrm{MoO}_{4}^{2 -} (b)\rightleftharpoons [(\mathrm{H}^{+})_{p}(\mathrm{MoO}_{4}^{2-})_{q} ] ^{p - 2q} (cpx _{pq})$$ by measuring [H+]=h, in NaClO4 ionic medium (A+, Y?) at [Na+]=3 mol?L?1. The total cell emf (E H), can be defined as: $$E_{\mathrm{H}} = E_{\mathrm{0H}} + g \log_{10} h + g\log_{10} f_{\mathrm{HTS}2} +E_{\mathrm{D}} + E_{\mathrm{D}f}$$ where: E 0H is an experimental constant, E D+E Df =E J, the classical liquid junction potential, and glog?10 f JTS2+E D+E Df =??E H. Here, $\mathrm{MoO}_{4}^{2 -}$ is the central ??metal ion??, E D is the ideal diffusion potential (Hendersson equation), E Df is the contribution of the activity coefficients to E D. f HTS2 denotes the activity coefficient of the H+ ions in the terminal solution TS2. The investigations of this system made by Sasaki and Sillén are critically analyzed. Some emf cells are supposed for the determination of the interaction coefficients involved. All calculations are valid at 25?°C. The revised equilibrium constants are presented in Table 14.  相似文献   

5.
The molar enthalpies of solution of 2-aminopyridine at various molalities were measured at T=298.15 K in double-distilled water by means of an isoperibol solution-reaction calorimeter. According to Pitzer’s theory, the molar enthalpy of solution of the title compound at infinite dilution was calculated to be DsolHm = 14.34 kJ·mol-1\Delta_{\mathrm{sol}}H_{\mathrm{m}}^{\infty} = 14.34~\mbox{kJ}\cdot\mbox{mol}^{-1}, and Pitzer’s ion interaction parameters bMX(0)L, bMX(1)L\beta_{\mathrm{MX}}^{(0)L}, \beta_{\mathrm{MX}}^{(1)L}, and CMXfLC_{\mathrm{MX}}^{\phi L} were obtained. Values of the relative apparent molar enthalpies ( φ L) and relative partial molar enthalpies of the compound ([`(L)]2)\bar{L}_{2}) were derived from the experimental enthalpies of solution of the compound. The standard molar enthalpy of formation of the cation C5H7N2 +\mathrm{C}_{5}\mathrm{H}_{7}\mathrm{N}_{2}^{ +} in aqueous solution was calculated to be DfHmo(C5H7N2+,aq)=-(2.096±0.801) kJ·mol-1\Delta_{\mathrm{f}}H_{\mathrm{m}}^{\mathrm{o}}(\mathrm{C}_{5}\mathrm{H}_{7}\mathrm{N}_{2}^{+},\mbox{aq})=-(2.096\pm 0.801)~\mbox{kJ}\cdot\mbox{mol}^{-1}.  相似文献   

6.
Electromotive-force measurements of the cell $$Pt;H_2 \left( {g,1{\text{ }}atm} \right)|HCl\left( {{\text{m}}_A } \right),NaCl\left( {{\text{m}}_B } \right)|AgCl;Ag$$ have been made at temperatures between 5 and 45°C at values ofm A+m B of 0.1, 0.3809, 0.6729, and 0.8720 mole-kg?1. The activity coefficients of HCl in HCl/NaCl mixtures and the Harned coefficients α12 have been obtained. The change of α12 with total molality is consistent with the existence of binary interactions between H+ and Na+ ions. The linear variation of the relative partial molal heat content with the fraction of NaCl in the mixture suggests that an analog of the Harned rule exists for this thermodynamic quantity.  相似文献   

7.
The electromotive force of HCl−Na2SO4 solutions has been determined from 5 to 50°C and ionic strengths from 0.5 to 6m with a Harned type cell The results have been used to determine the activity coefficient of HCl in the mixtures. The activity coefficiencts have been analyzed with the Pitzer equations to account for the ionic interactions. The measurements were used to determine interaction coefficients (β0, β1) for NaHSO4 solutions from 5 to 50°C. The model represents the mean activity coefficients HCl in the mixtures to ±0.005 over the entire temperature and concentration range of the measurements. The results have been combined with literature data to provide parameters that are valid from 0 to 250°C for NaHSO4 solutions.  相似文献   

8.
Measurements have been made of the Raman spectra of aqueous solutions of Be(ClO4)2, BeCl2, (NH4)2SO4 and BeSO4 to 50 cm−1. In some cases low concentrations (0.000770 mol⋅kg−1) have been used and two temperatures (23 and 40 °C) were studied. In BeSO4(aq), the ν 1-SO42-\mathrm{SO}_{4}^{2-} mode at 980 cm−1 broadens with increasing concentration and shifts to higher wavenumbers. At the same time, a band at 1014 cm−1 is detectable with this mode being assigned to [BeOSO3], an inner-sphere complex (ISC). Confirmation of this assignment is provided by the simultaneous appearance of stretching bands for the Be2+-OSO32-\mathrm{Be}^{2+}\mbox{-}\mathrm{OSO}_{3}^{2-} bond of the complex at 240 cm−1 and for the BeO4 skeleton mode of the [(H2O)3BeOSO3] unit at 498 cm−1. The ISC concentration increases with higher temperatures. The similarity of the n1-SO42-\nu_{1}\mbox{-}\mathrm{SO}_{4}^{2-} Raman bands for BeSO4 in H2O and D2O is further strong evidence for formation of an ISC. After subtraction of the ISC component at 1014 cm−1, the n1-SO42-\nu_{1}\mbox{-}\mathrm{SO}_{4}^{2-} band in BeSO4(aq) showed systematic differences from that in (NH4)2SO4(aq). This is consistent with a n1-SO42-\nu_{1}\mbox{-}\mathrm{SO}_{4}^{2-} mode at 982.7 cm−1 that can be assigned to the occurrence of an outer-sphere complex ion (OSCs). These observations are shown to be in agreement with results derived from previous relaxation measurements. Infrared spectroscopic data show features that are also consistent with a beryllium sulfato complex such as the appearance of a broad and weak n1-SO42-\nu_{1}\mbox{-}\mathrm{SO}_{4}^{2-} mode at ∼1014 cm−1, normally infrared forbidden, and a broad and asymmetric n3-SO42-\nu_{3}\mbox{-}\mathrm{SO}_{4}^{2-} band contour which could be fitted with four band components (including n3-SO42-(aq)\nu_{3}\mbox{-}\mathrm{SO}_{4}^{2-}(\mathrm{aq})). The formation of ISCs in BeSO4(aq) is much more pronounced than in the similar MgSO4(aq) system studied recently.  相似文献   

9.
Activity coefficients for sodium chloride in the NaCl + Na2SO4 + H2O ternary system were determined from emf measurements of the cell
at 15, 25, 35, and 45°C and at total ionic strengths from 0.1 to 6 mol-kg–1. These activity coefficient were analyzed by using the Harned rule and the treatments of Scatchard–Rush–Johnson and Pitzer. The analysis of activity coefficients at trace concentration was also achieved and qualitatively interpreted by considering the ionic interactions that can take place in the mixed system. Finally, the excess Gibbs energy of the mixtures was calculated and qualitatively analyzed against the composition of the system.  相似文献   

10.
Dilute aqueous phosphoric acid solutions have been studied by Raman spectroscopy at room temperature and over a broad temperature range from 5 to 301?°C. R-normalized spectra (Bose?CEinstein correction) have been constructed and used for quantitative analysis. The vibrational modes of H3PO4(aq) (pseudo C3v symmetry) have been assigned. The band with the highest intensity, the symmetric stretch ?? s{P(OH)3}(?? 1(a 1)) is strongly polarized while ?? 4(e), the antisymmetric stretch ?? asP(OH)3) is depolarized. The stretching mode of the phosphoryl group (?CP=O), ?? 2(a1) occurs at 1178?cm?1 and is polarized. In the range between 300 and 600?cm?1, the deformation modes are observed. The deformation mode, ??{PO?CH}, involving the O?CH group has been detected at 1250?cm?1 as a very weak and broad mode. In addition to the modes of phosphoric acid, modes of the dissociation product $\mathrm{H}_{2}\mathrm{PO}_{4}^{ -}(\mathrm{aq})$ have been observed. The mode at 1077?cm?1 has been assigned to ?? s{PO2}, and the mode at 877?cm?1 to ?? s{P(OH)2} which is overlapped by ?? s{P(OH)3} of H3PO4(aq). The modes of $\mathrm{H}_{2}\mathrm{PO}_{4}^{ -} \mathrm{(aq)}$ have been measured in dilute solution and were assigned and presented as well. H3PO4 is hydrated in aqueous solution, which can be verified with Raman spectroscopy by following the modes ?? 2(a1) and ?? 1(a1) as a function of temperature. These modes show a strong temperature dependency. The mode ?? 1(a1) broadens and shifts to lower wavenumbers. The mode ?? 2(a1) on the other hand, shifts to higher wavenumbers and broadens considerably with increases in temperature. At 301?°C the phosphoric acid is almost molecular in nature. In very dilute H3PO4 solutions at room temperature, however, the dissociation product, $\mathrm{H}_{2}\mathrm{PO}_{4}^{ -} \mathrm{(aq)}$ is the dominant species. In these dilute H3PO4(aq) solutions no spectroscopic features could be detected for a hydrogen bonded dimeric species of the formula $\mathrm{H}_{5}\mathrm{P}_{2}\mathrm{O}_{8}^{ -}$ (or the neutral dimeric acid H6P2O8). Pyrophosphate formation, although favored at high temperatures, could not be detected in dilute solution even at 301?°C due to the high water activity. In highly concentrated solutions, however, pyrophosphate formation is observable and in hydrate melts the formation of pyrophosphate is already noticeable at room temperature. Quantitative Raman measurements have been carried out to follow the dissociation of H3PO4(aq) over a very broad temperature range. In the temperature interval from 5.0 to 301.0?°C the pK 1 values for H3PO4(aq) have been determined and thermodynamic data have been derived.  相似文献   

11.
The solubility of SnO2(cassiterite) was studied at 23±2?°C as a function of time (7 to 49 days) and pH (0 to 14.5). Steady state concentrations were reached in <7 days. The data were interpreted using the SIT model. The data show that SnO2(cassiterite) is the stable phase at pH values of 10 K 0 value of ?64.39±0.30 for the reaction (SnO2(cassiterite) +2H2O?Sn4++4OH?) and values of 1.86±0.30, ≤?0.62, ?9.20±0.34, and ?20.28±0.34 for the reaction ( $\mathrm{Sn}^{4+} + n\mathrm{H}_{2}\mathrm{O} \rightleftarrows \mathrm{Sn}(\mathrm{OH})_{n}^{4 - n} + n\mathrm{H}^{+}$ ) with values of “n” equal to 1, 4, 5, and 6 respectively. These thermodynamic hydrolysis constants were used to reinterpret the extensive literature data for SnO2(am) solubility, which provided a log?10 K 0 value of ?61.80±0.29 for the reaction (SnO2(am)+2H2O?Sn4++4OH?). SnO2(cassiterite) is unstable under highly alkaline conditions (NaOH concentrations >0.003 mol?dm?3) and transforms to a double salt of SnO2 and NaOH. Although additional well-focused studies will be required for confirmation, the experimental data in the highly alkaline region (0.003 to 3.5 mol?dm?3 NaOH) can be well described with log?10 K 0 of ?5.29±0.35 for the reaction Na2Sn(OH)6(s)?Na2Sn(OH)6(aq).  相似文献   

12.
13.
The molar enthalpies of solution of VOSO4⋅3.52H2O(s) at various molalities in water and in aqueous sulfuric acid (0.1 mol⋅kg−1), Δsol H m, were measured by a solution-reaction isoperibol calorimeter at 298.15±0.01 K. An improved Archer’s method to estimate the standard molar enthalpy of solution, DsolH0m\Delta_{\mathrm{sol}}H^{0}_{\mathrm{m}}, was put forward. In terms of the improved method, the values of DsolH0m=-24.12±0.03 kJ·mol-1\Delta_{\mathrm{sol}}H^{0}_{\mathrm{m}}=-24.12\pm 0.03~\mbox{kJ}{\cdot}\mbox{mol}^{-1} of VOSO4⋅3.52H2O(s) in water and DsolH0m=-15.38±0.06 kJ·mol-1\Delta_{\mathrm{sol}}H^{0}_{\mathrm{m}}=-15.38\pm 0.06~\mbox{kJ}{\cdot}\mbox{mol}^{-1} in aqueous sulfuric acid were obtained, respectively. The data indicates that the energy state of VOSO4 in aqueous H2SO4 is higher than that in pure water.  相似文献   

14.
The hydrolytic behavior of antimonic acid, Sb(OH)5o, was experimentally investigated, at fixed temperatures within the range 10–40 °C, by both titration of dilute Na-antimonate solutions with HClO4 and single-point pH measurements of diluted Sb(OH)5o solutions. The thermodynamic constants, K a, for the reaction:
were derived at different controlled temperatures, based on pH measurements, applying suitable mass and electrical balances and correcting the concentrations of ionic species for medium effects. From the resulting log 10 K a values, those of the corresponding isocoulombic equilibrium reaction:
were computed and used to derive its thermodynamic properties. These were finally combined with the corresponding thermodynamic properties of the water association reaction, to obtain robust estimations of ΔG ro, ΔS ro and ΔH ro for the ionogenic reaction. These are the first thermodynamic data at temperatures different from 25 °C for the ionization reaction of Sb(OH)5o. The results of the present work confirm that Sb(OH)5o is a moderately weak and monoprotic acid with a pK a of 2.848 at 25 °C.  相似文献   

15.
16.
We studied the intermolecular interactions in ternary glycerol (Gly)–sample (S)–H2O systems at 25 °C. By measuring the excess partial molar enthalpy of Gly, HGlyEH_{\mathrm{Gly}}^{\mathrm{E}}, we evaluated the Gly–Gly enthalpic interaction, HGly-GlyEH_{\mathrm{Gly}\mbox{--}\mathrm{Gly}}^{\mathrm{E}}, in the presence of various samples (S). For S, tert-butanol (TBA), 1-propanol (1P), urea (UR), NaF, NaCl, NaBr, NaI, and NaSCN were used. It was found that hydrophobes (TBA and 1P) reduce the values of HGly-GlyEH_{\mathrm{Gly}\mbox{--}\mathrm{Gly}}^{\mathrm{E}} considerably, but a hydrophile (UR) had very little effect on HGly-GlyEH_{\mathrm{Gly}\mbox{--}\mathrm{Gly}}^{\mathrm{E}}. The results with Na salts indicated that there have very little effect on HGly-GlyEH_{\mathrm{Gly}\mbox{--}\mathrm{Gly}}^{\mathrm{E}}. This contrasts with our earlier studies on 1P–S–H2O in that Na+, F and Cl are found as hydration centers from the induced changes on HIP-IPEH_{\mathrm{IP}\mbox{--}\mathrm{IP}}^{\mathrm{E}} in the presence of S, while Br, I, and SCN are found to act as hydrophiles. In comparison with the Hofmeister ranking of these ions, the kosmotropes are hydration centers and the more kosmotropic the higher the hydration number, consistent with the original Hofmeister’s concept of “H2O withdrawing power.” Br, I and SCN, on the other hand, acted as hydrophiles and the more chaotropic they are the more hydrophilic. These observations hint that whatever effect each individual ion has on H2O, it is sensitive only to hydrophobes (such as 1P) but not to hydrophiles (such as Gly). This may have an important bearing towards understanding the Hofmeister series, since biopolymers are amphiphilic and their surfaces are covered by hydrophobic as well as hydrophilic parts.  相似文献   

17.
The 17O-NMR spin-lattice relaxation times (T 1) of water molecules in aqueous solutions of n-alkylsulfonate (C1 to C6) and arylsulfonic anions were determined as a function of concentration at 298 K. Values of the dynamic hydration number, (S-) = nh - (tc- /tc0 - 1)(\mathrm{S}^{-}) = n_{\mathrm{h}}^{ -} (\tau_{\mathrm{c}}^{-} /\tau_{\mathrm{c}}^{0} - 1), were determined from the concentration dependence of T 1. The ratios (tc -/tc0\tau_{\mathrm{c}}^{ -}/\tau_{\mathrm{c}}^{0}) of the rotational correlation times (tc -\tau_{\mathrm{c}}^{ -} ) of the water molecules around each sulfonate anion in the aqueous solutions to the rotational correlation time of pure water (tc0\tau_{\mathrm{c}}^{0}) were obtained from the n DHN(S) and the hydration number (nh -n_{\mathrm{h}}^{ -} ) results, which was calculated from the water accessible surface area (ASA) of the solute molecule. The tc -/tc0\tau_{\mathrm{c}}^{ -}/\tau_{\mathrm{c}}^{0} values for alkylsulfonate anions increase with increasing ASA in the homologous-series range of C1 to C4, but then become approximately constant. This result shows that the water structures of hydrophobic hydration near large size alkyl groups are less ordered. The rotational motions of water molecules around an aromatic group are faster than those around an n-alkyl group with the same ASA. That is, the number of water–water hydrogen bonds in the hydration water of aromatic groups is smaller in comparison with the hydration water of an n-alkyl group having the same ASA. Hydrophobic hydration is strongly disturbed by a sulfonate group, which acts as a water structure breaker. The disturbance effect decreases in the following order: $\mbox{--} \mathrm{SO}_{3}^{-} > \mbox{--} \mathrm{NH}_{3}^{ +} > \mathrm{OH}> \mathrm{NH}_{2}$\mbox{--} \mathrm{SO}_{3}^{-} > \mbox{--} \mathrm{NH}_{3}^{ +} > \mathrm{OH}> \mathrm{NH}_{2}. The partial molar volumes and viscosity B V coefficients for alkylsulfonate anions are linearly dependent on their n DHN(S) values.  相似文献   

18.
An electrogenerated chemiluminescence (ECL) sensor for reduced glutathione was developed based on $ \mathrm{Ru}\left( {\mathrm{bpy}} \right)_3^{2+ } $ -doped silica nanoparticles-modified gold electrode (Ru-DSNPs/Au). These uniform Ru-DSNPs (about 58?+?4 nm) were prepared by a water-in-oil microemulsion method and characterized by transmission electron microscope and scanning electron microscope. With such a unique immobilization method, a considerable $ \mathrm{Ru}\left( {\mathrm{bpy}} \right)_3^{2+ } $ was immobilized three dimensionally on the electrode, which could greatly enhance the ECL response and thus result in an increased sensitivity. The ECL analytical performances of this sensor for reduced glutathione based on the quenched ECL emission of $ \mathrm{Ru}\left( {\mathrm{bpy}} \right)_3^{2+ } $ have been investigated in detail. Under the optimum condition, the ECL intensity was linear with the reduced glutathione concentration in the range of 1.0?×?10?9 to 1.0?×?10?4?mol?L?1 (R?=?0.9971). This method has been successfully applied for the determination of reduced glutathione in serum samples with satisfactory results. The as-prepared ECL sensor for the determination of reduced glutathione displayed good sensitivity and stability.  相似文献   

19.
Heats of transport for dilute aqueous HCl solutions at 25°C have been determined from the measurements of thermoelectric powers of the thermocell $$(T){\text{ }}Ag{\text{ - }}AgCl/HCl(ag.)/Ag - AgCl{\text{ (T + }}\Delta {\text{T)}}$$ The variation of the heat of transport with concentration has been examined up to 0.04M and the molar heat of transport at infinite dilution obtained by extrapolation. Present experimental results may be summarized by the equation $${\text{Q}}^ * = {\text{ }}3397 - 3734I^{1/2} {\text{ + }}33610{\text{I}}^{{\text{3/2}}}$$ whereQ * is the heat of transport in cal-mole?1 andI is the ionic strength.  相似文献   

20.
The simple three-parameter Pitzer and extended Hückel equations were used for calculation of activity coefficients of aqueous hydrochloric acid at various temperatures from 0 to 50 °C up to a molality of 5.0 mol·kg?1. A more complex Hückel equation was also used at these temperatures up to a HCl molality of 16 mol·kg?1. The literature data measured by Harned and Ehlers J. Am. Chem. Soc. 54, 1350–1357 (1932) and 55, 2179–2193 (1933) and by Åkerlöf and Teare [J. Am. Chem. Soc. 59, 1855–1868 (1937)] on galvanic cells without a liquid junction were used in the parameter estimations for these equations. The latter data consist of sets of measurements in the temperature range 0 to 50 °C at intervals of 10 °C, and data at these temperatures were used in all of these estimations. It was observed that the estimated parameters follow very simple equations with respect to temperature. They are either constant or depend linearly on the temperature. The values for the activity coefficient parameters calculated by using these simple equations are recommended here. The suggested new parameter values were tested with all reliable cell potential and vapor pressure data available in literature for concentrated HCl solutions. New Harned cell data at 5, 15, 25, 35, and 45 °C up to a molality of 6.5 mol·kg?1 are reported and were also used in the tests. The activity coefficients obtained from the new equations were compared to those calculated by using the Pitzer equations of Holmes et al. [J. Chem. Thermodyn. 19, 863–890 (1987)] and of Saluja et al. [Can. J. Chem. 64, 1328–1335 (1986)] at various temperatures, and by using the extended Hückel equation of Hamer and Wu [J. Phys. Chem. Ref. Data 1, 1047–1099 (1972)] at 25 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号