首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Through the study of light hypernuclei, we can learn about hyperon nucleon interaction. The hypernuclear spectroscopy with electron beams is one of most powerful methods to study detailed structure of light hypernuclei thanks to its high energy resolution. With a decade of efforts at Jefferson Lab, the spectroscopy of Λ hypernuclei with an electron beam is now established. Observation of ${_{\Lambda}^{7}}$ He which gave the last missing binding energy of the A = 7, T = 1 iso-triplet hypernuclei provides an important experimental input for the charge symmetry breaking (CSB) effect of the ΛN interaction. Further study about A = 4 hypernuclear iso-doublet, ${_{\Lambda}^{4}}$ H and ${_{\Lambda}^{4}}$ He, is necessary and such experiments are now planned.  相似文献   

2.
Experiments on the interaction of metal targets with a Nd:YAG laser beam ( \(\lambda \)  = 1,064 nm, intensity \(10^{10}\) \(10^{11}\,\hbox {W/cm}{^2}\) ) are carried out in a finite Nitrogen pressure environment. The observed \(\hbox {N}_2\) spectra are unambiguous evidence of the existence of an ionization and excitation source, arriving at the observation volume prior to the plume. Such a source can be either prompt electrons or VUV radiation. The analysis reveals that the prompt electron interpretation requires energies in excess of 1 keV, incompatible with any acceleration mechanisms relevant for such laser intensities. On the other hand, VUV radiation is sufficiently strong to explain the observed spectra.  相似文献   

3.
The T2K experiment searches for the appearance of electron neutrinos in a muon neutrino beam. The rate of this process is sensitive to the neutrino mixing parameter θ 13. Recent measurements that $\theta_{13} \ne 0$ imply that ν μ ν e oscillations should be observable. Using all data through May 15, 2012 the T2K experiment has detected 10 candidate ν e events, with an expected background for θ 13?=?0 of 2.73±0.37 events. This 3.2σ excess of ν e events is the strongest indication to date for appearance of electron neutrinos in a neutrino oscillation experiment, and for normal mass hierarchy and δ CP ?=?0 yields $0.059 < \sin^2 2\theta_{13} < 0.164$ at the 68 % C.L.  相似文献   

4.
The nonlinear optical properties of an azobenzene-containing ionic liquid crystalline polymer were investigated by a single beam Z-scan technique employing 38 ps and 6 ns laser pulses at 532 nm. The polymer film exhibited large nonlinear refraction and negligible nonlinear absorption under both ps and ns pulses excitation. The nonlinear refractive indices of the polymer were in the order of \(10^{-11} \hbox {cm}^{2}/\hbox {W}\) under ps excitation and \(10^{-8}\hbox {cm}^{2}/\hbox {W}\) under ns excitation, respectively. The mechanism accounting for the process of nonlinear refraction was discussed in terms of photoinduced trans-cis transformation and thermal effect.  相似文献   

5.
High-quality ZnO thin films were grown on a-plane sapphire substrates by plasma-assisted molecular beam epitaxy. X-ray diffraction and transmission electron microscopy reveal that the ZnO films have high structural quality and an atomically sharp ZnO/Al2O3 interface. The full width at half maximum values of the 0002 and $30\bar{3}2$ ZnO ω-rocking curves are 467.8 and 813.5 arc sec for a 600 nm thick ZnO film. A screw dislocation density of 4.35×108 cm?2 and an edge dislocation density of 3.38×109 cm?2 are estimated by X-ray diffraction. The surface of the ZnO epilayers contains hexagonal pits, which can be observed in the Zn-polar ZnO. The films have a resistivity of 0.119 Ω?cm, an electron concentration of 6.85×1017 cm?3, and a mobility of 76.5 cm2?V?1?s?1 at room temperature. Low temperature photoluminescence measurements show good optical properties comparable to ZnO single crystals.  相似文献   

6.
Based on the extended Huygens–Fresnel Principle and the unified theory of coherence and polarization, the analytical formulas for the polarization degree and spectral coherence degree of partially coherent electromagnetic elegant Laguerre–Gaussian (PCEELG) beams through turbulent atmosphere are obtained theoretically in detail. It is found that the polarization degree of PCEELG beams tends to the value of its source plane after a sufficiently long propagation distance in turbulent atmosphere. Furthermore, this value is independent of the beam orders, the correlation length in the source plane and the structure constant of the turbulent atmosphere ( $C_{n}^{2}$ ). The polarization degree of PCEELG beams also acquires a particular value at a certain distance in free space, which is different from the value in the source plane. The spectral coherence degree of PCEELG beams has an oscillatory behavior for different propagation distance, beam orders and  $C_{n}^{2}$ .  相似文献   

7.
Continuing studies into an all-diode laser-based 3.3 μm difference frequency generation cavity ring-down spectroscopy system are presented. Light from a 1,560 nm diode laser, amplified by an erbium-doped fibre amplifier, was mixed with 1,064 nm diode laser radiation in a bulk periodically poled lithium niobate crystal to generate 16 μW of mid-IR light at 3,346 nm with a conversion efficiency of $0.05\,\%\,{\text{W}}^{-1}\,{\text{cm}}^{-1}$ . This radiation was coupled into a 77 cm long linear cavity with average mirror reflectivities of 0.9996, and a measured baseline ring-down time of $6.07\pm 0.03\,\upmu{\rm s}$ . The potential of such a spectrometer was illustrated by investigating the $P(3)$ transition in the fundamental $\nu_{3}(F_{2})$ band of ${\text{CH}}_4$ both in a 7.5 ppmv calibrated mixture of ${\text{CH}}_4$ in air and in breath samples from methane and non-methane producers under conditions where the minimum detectable absorption coefficient ( $\alpha_{\rm min}$ ) was $2.8 \times 10^{-8}\,{\rm cm}^{-1}$ over 6 s using a ring-down time acquisition rate of 20 Hz. Allan variance measurements indicated an optimum $\alpha_{\rm min}$ of $2.9\times 10^{-9}\,{\rm cm}^{-1}$ over 44 s.  相似文献   

8.
ARIEL e-linac     
The design and implementation of a 1/2 MW beam power electron linear accelerator (e-linac) for the production of rare isotope beams (RIB) via photo-fission in the context of the Advanced Rare IsotopE Laboratory, ARIEL (Koscielniak et al. 2008; Merminga et al. 2011; Dilling et al., Hyperfine Interact, 2013), is described. The 100 % duty factor e-linac is based on super-conducting radiofrequency (SRF) technology at 1.3 GHz and has a nominal energy of 50 MeV. This paper provides an overview of the accelerator major components including the gun, cryomodules and cryoplant, high power RF sources, and machine layout including beam lines. Design features to facilitate operation of the linac as a Recirculating Linear Accelerator (RLA) for various applications, including Free Electron Lasers, are also noted.  相似文献   

9.
In this investigation, we propose and investigate a wavelength converter by using a cost-effective and uncooled TO-can package reflective semiconductor optical amplifier with $\sim $ 1.2 GHz bandwidth. In this measurement, the converted data rate can support 1.25–10 Gbit/s on-off keying modulation rates by using the cross gain modulation technique.  相似文献   

10.
We present here a proposal to make use of the antiproton ion collider AIC of FAIR to breed cold antideuterons using the pionic fusion reactions $\overline{pp} \to \overline{d}\pi^{-}$ . An antideuteron yield of 1.4% per pair of antiprotons is reached. With a luminosity L?=?5.2×1028 cm???2 s???1 the expected antideuteron production rate is 23 s???1. Methods for improving the antideuteron yield and production rate are indicated.  相似文献   

11.
The ductile to brittle transition that occurs in amorphous Fe78Si9B13 (METGLAS-2605S2) has been investigated using mechanical measurements over the temperature range 250–370 °C. The fracture toughness values, K Ic , have been determined for a range of annealing times (5–30 min) and cooling rates of 15–45 °C/min. A pronounced ductile to brittle transition is observed around 310(10) °C although no obvious structural changes are evident as indicated by x-ray diffraction. Comparison of transmission and back-scattered conversion electron 57Fe Mössbauer spectra for the bulk as-received ribbon in the ductile state ( $K_{Ic}=52~{\rm MPa} \cdot \sqrt{m}$ ) and the ribbon annealed to the brittle state ( $K_{Ic}\sim10~{\rm MPa} \cdot \sqrt{m}$ ) indicates magnetic texture effects in both the bulk and on the surface of these amorphous ribbons, related to the magnetostriction resulting from the quenched-in stress during the ribbon production process, and the ensuing stress-relief upon annealing.  相似文献   

12.
The prototype of a $\bar{K}$ nuclear cluster, K ???pp, has been investigated using effective $\bar{K}N$ potentials based on chiral SU(3) dynamics. Variational calculation shows a bound state solution with shallow binding energy B(K ???pp)?=?20±3 MeV and broad mesonic decay width $\Gamma(\bar{K}NN \rightarrow \pi Y N)=40$ –70 MeV. The $\bar{K}N(I=0)$ pair in the K ???pp system exhibits a similar structure as the Λ(1405). We have also estimated the dispersive correction, p-wave $\bar{K}N$ interaction, and two-nucleon absorption width.  相似文献   

13.
14.
In order to improve the glass-forming ability (GFA) of Nd–Fe–B ternary alloys to obtain fully amorphous bulk Nd–Fe–B-based alloy, the effects of Mo and Y doping on GFA of the alloys were investigated. It was found that the substitution of Mo for Fe and Y for Nd enhanced the GFA of the Nd–Y–Fe–Mo–B alloys. It was also revealed that the GFA of the samples was optimized by 4 at.% Mo doping and increased with the Y content. The fully amorphous structures were all formed in the Nd $_{6-{x}}$ Y $_{{x}}$ Fe $_{68}$ Mo $_{4}$ B $_{22}$ (x $=$ 1–5) alloy rods with 1.5 mm-diameter. After subsequent crystallization, the devitrified Nd $_{3}$ Y $_{3}$ Fe $_{68}$ Mo $_{4}$ B $_{22}$ alloy rod exhibited a uniform distribution of grains with a coercivity of 364.1 kA/m. The crystallization behavior of Nd $_{3}$ Y $_{3}$ Fe $_{68}$ Mo $_{4}$ B $_{22}$ BMG was investigated in isothermal situation. The Avrami exponent n determined by JAM plot is lower than 2.5, implying that the crystallization is mainly governed by a growth of particles with decreasing nucleation rate.  相似文献   

15.
Event-to-event fluctuation pattern of pions produced by proton and pion beams is studied in terms of the newly defined erraticity measures χ(p, q), $\chi_q^{\prime}$ and $\mu_q^{\prime}$ proposed by Cao and Hwa. The analysis reveals the erratic behaviour of the produced pions signifying the chaotic multiparticle production in high-energy hadron–nucleus interactions (π ???–AgBr interactions at 350 GeV/c and p–AgBr interactions at 400 GeV/c). However, the chaoticity does not depend on whether the projectile is proton or pion. The results are compared with the results of the VENUS-generated data for the above interactions which suggests that VENUS event generator is unable to reproduce the event-to-event fluctuations of spatial patterns of final states. A comparative study of p–AgBr interactions and pp collisions at 400 GeV/c from NA27, with the help of a quantitative parameter for the assessment of pion fluctuation, indicates conclusively that particle production process is more chaotic for hadron–nucleus interactions than for hadron–hadron interactions.  相似文献   

16.
A search for axioelectric absorption of solar axions produced in the \(p + d \rightarrow {^3\mathrm {He}}+\gamma (5.5~\mathrm {MeV})\) reaction has been performed with a BGO detector placed in a low-background setup. A model-independent limit on the combination of axion–nucleon and axion–electron coupling constants has been obtained: \(| g_{Ae}\times g_{AN}^3|< 1.9\times 10^{-10}\) for 90 % confidence level. The constraint of the axion–electron coupling constant has been obtained for hadronic axion with masses of (0.1–1) MeV: \(|g_{Ae}| \le (0.96 - 8.2)\times 10^{-8}\) .  相似文献   

17.
Let H = ?Δ + V, where V is a real valued potential on ${\mathbb {R}^2}$ satisfying ${\|V(x)|\lesssim \langle x \rangle^{-3-}}$ . We prove that if zero is a regular point of the spectrum of H = ?Δ + V, then $${\| w^{-1} e^{itH}P_{ac}f\|_{L^\infty(\mathbb{R}^2)} \lesssim \frac{1}{|t|\log^2(|t|)} \| w f\|_{L^1(\mathbb{R}^2)},\,\,\,\,\,\,\,\, |t| \geq 2}$$ , with w(x) = (log(2 + |x|))2. This decay rate was obtained by Murata in the setting of weighted L 2 spaces with polynomially growing weights.  相似文献   

18.
The Schrödinger  equation for a particle of rest mass $m$ and electrical charge $ne$ interacting with a four-vector potential $A_i$ can be derived as the non-relativistic limit of the Klein–Gordon  equation $\left( \Box '+m^2\right) \varPsi =0$ for the wave function $\varPsi $ , where $\Box '=\eta ^{jk}\partial '_j\partial '_k$ and $\partial '_j=\partial _j -\mathrm {i}n e A_j$ , or equivalently from the one-dimensional  action $S_1=-\int m ds +\int neA_i dx^i$ for the corresponding point particle in the semi-classical approximation $\varPsi \sim \exp {(\mathrm {i}S_1)}$ , both methods yielding the equation $\mathrm {i}\partial _0\varPsi \approx \left( \frac{1}{2m}\eta ^{\alpha \beta }\partial '_{\alpha }\partial '_{\beta } + m + n e\phi \right) \varPsi $ in Minkowski  space–time  , where $\alpha ,\beta =1,2,3$ and $\phi =-A_0$ . We show that these two methods generally yield equations  that differ in a curved background  space–time   $g_{ij}$ , although they coincide when $g_{0\alpha }=0$ if $m$ is replaced by the effective mass $\mathcal{M}\equiv \sqrt{m^2-\xi R}$ in both the Klein–Gordon  action $S$ and $S_1$ , allowing for non-minimal coupling to the gravitational  field, where $R$ is the Ricci scalar and $\xi $ is a constant. In this case $\mathrm {i}\partial _0\varPsi \approx \left( \frac{1}{2\mathcal{M}'} g^{\alpha \beta }\partial '_{\alpha }\partial '_{\beta } + \mathcal{M}\phi ^{(\mathrm g)} + n e\phi \right) \varPsi $ , where $\phi ^{(\mathrm g)} =\sqrt{g_{00}}$ and $\mathcal{M}'=\mathcal{M}/\phi ^{(\mathrm g)} $ , the correctness of the gravitational  contribution to the potential having been verified to linear order $m\phi ^{(\mathrm g)} $ in the thermal-neutron beam interferometry experiment due to Colella et al. Setting $n=2$ and regarding $\varPsi $ as the quasi-particle wave function, or order parameter, we obtain the generalization of the fundamental macroscopic Ginzburg-Landau equation of superconductivity to curved space–time. Conservation of probability and electrical current requires both electromagnetic gauge and space–time  coordinate conditions to be imposed, which exemplifies the gravito-electromagnetic analogy, particularly in the stationary case, when div ${{\varvec{A}}}=\hbox {div}{{\varvec{A}}}^{(\mathrm g)}=0$ , where ${{\varvec{A}}}^{\alpha }=-A^{\alpha }$ and ${{\varvec{A}}}^{(\mathrm g)\alpha }=-\phi ^{(\mathrm g)}g^{0\alpha }$ . The quantum-cosmological Schrödinger  (Wheeler–DeWitt) equation is also discussed in the $\mathcal{D}$ -dimensional  mini-superspace idealization, with particular regard to the vacuum potential $\mathcal V$ and the characteristics of the ground state, assuming a gravitational  Lagrangian   $L_\mathcal{D}$ which contains higher-derivative  terms up to order $\mathcal{R}^4$ . For the heterotic superstring theory  , $L_\mathcal{D}$ consists of an infinite series in $\alpha '\mathcal{R}$ , where $\alpha '$ is the Regge slope parameter, and in the perturbative approximation $\alpha '|\mathcal{R}| \ll 1$ , $\mathcal V$ is positive semi-definite for $\mathcal{D} \ge 4$ . The maximally symmetric ground state satisfying the field equations is Minkowski  space for $3\le {\mathcal {D}}\le 7$ and anti-de Sitter  space for $8 \le \mathcal {D} \le 10$ .  相似文献   

19.
We present an extensive study of the underlying structure of femtosecond laser-induced nanogratings in fused silica. To explore the evolution of the three-dimensional structure of the nanopores and cracks, of which the nanogratings consist, we performed small angle X-ray scattering measurements as well as focused ion beam milling and scanning electron microscopy. Our results show that cracks with dimensions of (280  $\times $  25  $\times $  380) nm $^{3}$ and nanopores with typical diameters of (30  $\times $  25  $\times $  75) nm $^{3}$ are formed independent of various illumination parameters. With increasing number of laser pulses the smaller pores fuse to larger structures. Furthermore, the data suggest a cross-sectional change of the pores from cuboidal to ellipsoidal.  相似文献   

20.
Room-temperature pulsed and continuous-wave (cw) operation of a tunable external cavity (EC) quantum cascade laser (QCL) at an emitting wavelength of $4.7\,\upmu \hbox {m}$ 4.7 μ m was presented. The effect of different external cavity lengths and grating angles of the EC–QCL system were analyzed numerically. A wide tuning range greater than $131\,\hbox {cm}^{-1}$ 131 cm - 1 was obtained in pulsed mode at room temperature. Without the anti-reflection coating procedure, single-mode cw operation with a side-mode suppression ratio (SMSR) above 20 dB and a wide tuning range greater than $116\, \hbox {cm}^{-1}$ 116 cm - 1 were achieved. Near the center region, SMSR about 30 dB was also realized through designing the external cavity length. Strain-compensation combined with two-phonon resonance in an active region design and the high-reflection coating promised low threshold current density. A record low threshold current density of $0.901\,\hbox {kA/cm}^{2}$ 0.901 kA/cm 2 for an EC–QCL operated in cw mode was realized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号