首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Determining the maximum outerplanar subgraph of a given graph is known to be an NP-complete problem. In the literature there are no earlier experiment on approximating the maximum outerplanar subgraph problem. In this paper we compare solution quality and running times of different heuristics for finding maximum outerplanar subgraphs. We compare a greedy heuristic against a triangular cactus heuristic and its greedy variation. We also use the solutions from the greedy heuristics as initial solutions for a simulated annealing algorithm.The main experimental result is that simulated annealing with initial solution taken from the greedy triangular cactus heuristic yields the best known approximations for the maximum outerplanar subgraph problem.Work funded by the Tampere Graduate School in Information Science and Engineering (TISE) and supported by the Academy of Finland (Project 51528).  相似文献   

2.
We present an exact approach for solving the r-interdiction median problem with fortification. Our approach consists of solving a greedy heuristic and a set cover problem iteratively that guarantees to find an optimal solution upon termination. The greedy heuristic obtains a feasible solution to the problem, and the set cover problem is solved to verify optimality of the solution and to provide a direction for improvement if not optimal. We demonstrate the performance of the algorithm in a computational study.  相似文献   

3.
The multi-period single-sourcing problem that we address in this paper can be used as a tactical tool for evaluating logistics network designs in a dynamic environment. In particular, our objective is to find an assignment of customers to facilities, as well as the location, timing and size of production and inventory levels, that minimizes total assignment, production, and inventory costs. We propose a greedy heuristic, and prove that this greedy heuristic is asymptotically optimal in a probabilistic sense for the subclass of problems where the assignment of customers to facilities is allowed to vary over time. In addition, we prove a similar result for the subclass of problems where each customer needs to be assigned to the same facility over the planning horizon, and where the demand for each customer exhibits the same seasonality pattern. We illustrate the behavior of the greedy heuristic, as well as some improvements where the greedy heuristic is used as the starting point of a local interchange procedure, on a set of randomly generated test problems. These results suggest that the greedy heuristic may be asymptotically optimal even for the cases that we were unable to analyze theoretically.  相似文献   

4.
We consider low-rank semidefinite programming (LRSDP) relaxations of unconstrained $\{-1,1\}$ quadratic problems (or, equivalently, of Max-Cut problems) that can be formulated as the non-convex nonlinear programming problem of minimizing a quadratic function subject to separable quadratic equality constraints. We prove the equivalence of the LRSDP problem with the unconstrained minimization of a new merit function and we define an efficient and globally convergent algorithm, called SpeeDP, for finding critical points of the LRSDP problem. We provide evidence of the effectiveness of SpeeDP by comparing it with other existing codes on an extended set of instances of the Max-Cut problem. We further include SpeeDP within a simply modified version of the Goemans?CWilliamson algorithm and we show that the corresponding heuristic SpeeDP-MC can generate high-quality cuts for very large, sparse graphs of size up to a million nodes in a few hours.  相似文献   

5.
The maximum cut (Max-Cut) problem has extensive applications in various real-world fields, such as network design and statistical physics. In this paper, a more practical version, the Max-Cut problem with fuzzy coefficients, is discussed. Specifically, based on credibility theory, the Max-Cut problem with fuzzy coefficients is formulated as an expected value model, a chance-constrained programming model and a dependent-chance programming model respectively according to different decision criteria. When these fuzzy coefficients are represented by special fuzzy variables like triangular fuzzy numbers and trapezoidal fuzzy numbers, the crisp equivalents of the fuzzy Max-Cut problem can be obtained. Finally, a genetic algorithm combined with fuzzy simulation techniques is designed for the general fuzzy Max-Cut problem under these models and numerical experiment confirms the effectiveness of the designed genetic algorithm.  相似文献   

6.
The constrained forest problem seeks a minimum-weight spanning forest in an undirected edge-weighted graph such that each tree spans at least a specified number of vertices. We present a greedy heuristic for this NP-hard problem, whose solutions are at least as good as, and often better than, those produced by the best-known 2-approximate heuristic.  相似文献   

7.
耦合活动的排程直接影响新产品开发的周期和成本,因而受到了学者和研发管理人员的普遍关注。本文针对最小化总反馈长度这一耦合活动排程常用目标,将遗传算法与局部搜索算法相结合,提出了一种新的混合优化算法,并系统分析了参数对算法性能的影响。然后将算法应用到实际案例和大量随机算例中,实验结果表明混合优化算法较大幅度提高了现有局部搜索算法解的质量;同等情形下,混合优化算法所获得解比单纯运用遗传算法所获得解更好。  相似文献   

8.
We provide a characterization of the cases when the greedy algorithm may produce the unique worst possible solution for the problem of finding a minimum weight base in an independence system when the weights are taken from a finite range. We apply this theorem to TSP and the minimum bisection problem. The practical message of this paper is that the greedy algorithm should be used with great care, since for many optimization problems its usage seems impractical even for generating a starting solution (that will be improved by a local search or another heuristic).  相似文献   

9.
Databases require a management system which is capable of retrieving and storing information as efficiently as possible. The data placement problem is concerned with obtaining an optimal assignment of data tuples onto secondary storage devices. Such tuples have complicated interrelationships which make it difficult to find an exact solution to our problem in a realistic time.We therefore consider heuristic methods—three of which are discussed and compared — the ‘greedy’ graph-collapsing method, the probabilistic hill-climbing method of simulated annealing and a third ‘greedy’ heuristic, the random improvement method, which is a local search heuristic. Overall, the best performance is obtained from the graph-collapsing method for the less complicated situations, but for larger-scale problems with complex interrelationships between tuples the simulated annealing and random improvement algorithms give better results.  相似文献   

10.
In this paper, a greedy randomised heuristic is applied to a complex vehicle-scheduling problem with tight time windows and additional constraints. Two forms of adaptive search are identified, which are referred to as local and global adaptation. In both cases, the calculation of the greedy function is modified by an amount which measures heuristically the quality of the partial solution that is obtained when a decision is made. One use of global adaptation is an approach which is referred to as a learning strategy since it involves an attempt to learn from previous mistakes by an appropriate updating of the greedy function from one run of the heuristic to the next. Such a learning strategy forms the main focus of this paper. Experimental results show that it is potentially a powerful heuristic device, since it greatly enhanced the effectiveness of those methods that had previously been applied to this problem; that is, a greedy randomized heuristic which also incorporated a look-ahead strategy and a version of the well-known savings method. It is suggested that learning strategies of the general type introduced in this paper have potential for application to other combinatorial optimisation problems.  相似文献   

11.
Max-Cut is a famous NP-hard problem in combinatorial optimization. In this article, we propose a Lagrangian smoothing algorithm for Max-Cut, where the continuation subproblems are solved by the truncated Frank-Wolfe algorithm. We establish practical stopping criteria and prove that our algorithm finitely terminates at a KKT point, the distance between which and the neighbour optimal solution is also estimated. Additionally, we obtain a new sufficient optimality condition for Max-Cut. Numerical results indicate that our approach outperforms the existing smoothing algorithm in less time.  相似文献   

12.
Suicide bombing is an infamous form of terrorism that is becoming increasingly prevalent in the current era of global terror warfare. We consider the case of targeted attacks of this kind, and the use of detectors distributed over the area under threat as a protective countermeasure. Such detectors are non-fully reliable, and must be strategically placed in order to maximize the chances of detecting the attack, hence minimizing the expected number of casualties. To this end, different metaheuristic approaches based on local search and on population-based search (such as a hill climber, different Greedy randomized adaptive search procedures, an evolutionary algorithm and several estimation of distribution algorithms) are considered and benchmarked against a powerful greedy heuristic from the literature. We conduct an extensive empirical evaluation on synthetic instances featuring very diverse properties. Most metaheuristics outperform the greedy algorithm, and a hill-climber is shown to be superior to remaining approaches. This hill-climber is subsequently subject to a sensitivity analysis to determine which problem features make it stand above the greedy approach, and is finally deployed on a number of problem instances built after realistic scenarios, corroborating the good performance of the heuristic.  相似文献   

13.
The constrained forest problem seeks a minimum-weight spanning forest in an undirected edge-weighted graph such that each tree spans at least a specified number of vertices. We present a structured class of greedy heuristics for this NP-hard problem, and identify the best heuristic.  相似文献   

14.
This paper introduces Empirically Adjusted Greedy Heuristics (EAGH), a procedure for designing greedy algorithms for a given combinatorial optimization problem and illustrates the way in which EAGH works with an application to minimize the makespan in the permutation flow-shop problem. The basic idea behind EAGH is that a greedy heuristic can be seen as a member of an infinite set of heuristics, this set being defined by a function that depends on several parameters. Each set of values of the parameters corresponds to a specific greedy heuristic. Then, the best element of the set, for a training set of instances of the problem, is found by applying a non-linear optimization algorithm to a function that measures the quality of the obtained solutions to the instances of the training set, and which depends on the parameters that characterize each specific algorithm. EAGH allows improving known heuristics or finding good new ones.  相似文献   

15.
In this paper, a Lagrangian-based heuristic is proposed for the degree constrained minimum spanning tree problem. The heuristic uses Lagrangian relaxation information to guide the construction of feasible solutions to the problem. The scheme operates, within a Lagrangian relaxation framework, with calls to a greedy construction heuristic, followed by a heuristic improvement procedure. A look ahead infeasibility prevention mechanism, introduced into the greedy heuristic, allowed us to solve instances of the problem where some of the vertices are restricted to having degrees 1 or 2. Furthermore, in order to cut down on CPU time, a restricted version of the original problem is formulated and used to generate feasible solutions. Extensive computational experiments were conducted and indicate that the proposed heuristic is competitive with the best heuristics and metaheuristics in the literature.  相似文献   

16.
While the problem of packing single containers and pallets has been thoroughly investigated very little attention has been given to the efficient packing of multiple container loads. Normally in practice a multiple container load is packed by a single container algorithm used in a greedy fashion. This paper introduces the issues involved in multiple container loading. It lays out three different strategies for solving the problem: sequential packing using a single container heuristic, pre-allocating items to the containers and choosing container loads using simultaneous packing models. The principal simultaneous models are pattern selection IP models. We present an application of packing pipes in shipping containers using two pattern selection IP models, a pattern selection heuristic, a sequential greedy algorithm and a pre-allocation method. The experimental results use randomly generated data sets. We discuss several useful insights into the methods and show that for this application the pattern selection methods perform best.  相似文献   

17.
In this paper, we suggest a methodology to solve a cooperative transportation planning problem and to assess its performance. The problem is motivated by a real-world scenario found in the German food industry. Several manufacturers with same customers but complementary food products share their vehicle fleets to deliver their customers. After an appropriate decomposition of the entire problem into sub problems, we obtain a set of rich vehicle routing problems (VRPs) with time windows for the delivery of the orders, capacity constraints, maximum operating times for the vehicles, and outsourcing options. Each of the resulting sub problems is solved by a greedy heuristic that takes the distance of the locations of customers and the time window constraints into account. The greedy heuristic is improved by an appropriate Ant Colony System (ACS). The suggested heuristics to solve the problem are assessed within a dynamic and stochastic environment in a rolling horizon setting using discrete event simulation. We describe the used simulation infrastructure. The results of extensive simulation experiments based on randomly generated problem instances and scenarios are provided and discussed. We show that the cooperative setting outperforms the non-cooperative one.  相似文献   

18.
This paper addresses a field technician scheduling problem faced by many service providers in telecommunication industry. The problem is to assign a set of jobs, at different locations with time windows, to a group of field technicians with different job skills. Such a problem can be viewed as a generalization of the well-known vehicle routing problem with time windows since technician skills need to be matched with job types. We designed and tested several heuristic procedures for solving the problem, namely a greedy heuristic, a local search algorithm, and a greedy randomized adaptive search procedure (GRASP). Our computational results indicate that GRASP is the most effective among them but requires more CPU time. However, the unique structure of GRASP allows us to exploit parallelism to achieve linear speed-up with respect to the number of machines used.  相似文献   

19.
20.
We consider the problem of minimizing a supermodular set function on comatroid whose special case is the well-known NP-hard minimization p-median problem. The main result of the paper is a tight bound on the performance guarantee of a greedy heuristic for this problem. As a corollary an analog of the Rado–Edmonds theorem for comatroids is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号