首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to directly observe neutron scattering by heavy fermion quasiparticles at low temperatures, a CeRu2Si2 single crystal has been studied by the small-angle neutron scattering method. In the experiment, neutron scattering is observed at T = 0.85 K for momentum transfers q ≤ 0.04 Å?1, which is treated as the orbital component of magnetic scattering by heavy fermion quasiparticles. It has been found that the application of a magnetic field H = 1 T leads to both an increase in the observed scattering and its anisotropy with respect to the field direction. Moreover, measurements in the magnetic field reveal additional scattering for q > 0.04 Å?1, which is well described by a Lorentzian and is interpreted as neutron magnetic scattering by spin-density fluctuations with a correlation radius Rc ≈ 30 Å.  相似文献   

2.
The tetragonal compound UNi2Si2 exhibits in zero magnetic field three different antiferromagnetic phases belowT N =124 K. They are formed by ferromagnetic basal planes, which are antiferromagnetically coupled along thec-axis with the propagation vectorq=(0, 0, q z ). Two additional order-order magnetic phase transitions are observed below T N , namely atT 1=108 K and T 2=40 K in zero magnetic field. All three phases exhibit strong uniaxial anisotropy confining the U moments to a direction parallel to the c-axis. UNi2Si2 single crystals were studied in detail by measuring bulk thermodynamic properties, such as thermal expansion, resistivity, susceptibility, and specific heat. A microscopic study using neutron diffraction was performed in magnetic fields up to 14.5 T parallel to the c-axis, and a complex magnetic phase diagram has been determined. Here, we present the analysis of specific-heat data measured in magnetic fields up to 14 T compared with the results of the neutron-diffraction study and with other thermodynamic properties of UNi2Si2.  相似文献   

3.
The ab initio calculations have been carried out for the crystal structure and Raman spectrum of a single crystal of lutetium pyrosilicate Lu2Si2O7. The types of fundamental vibrations and their frequencies and intensities in the Raman spectrum for two polarizations of the crystal have been determined. The calculations have been performed within the framework of the density functional theory (DFT) using the hybrid functionals. The ions involved in the vibrations have been identified using the method of isotopic substitution. The results of the calculations are in good agreement with the experiment.  相似文献   

4.
Comprehensive NMR investigation of low-frequency spin dynamics of LiCu2O2 (LCO) and NaCu2O2 (NCO) low-dimensional helical magnets in the paramagnetic state has been carried out for the first time. Temperature dependences of the spin–lattice relaxation rate and anisotropy on various LCO/NCO nuclei have been determined at various orientations of single crystals in an external magnetic field. The spatial asymmetry of spin fluctuations in LCO multiferroic has been discovered. The quantitative analysis of the anisotropy of spin–lattice relaxation in LCO/NCO has allowed estimating the contributions of individual neighboring Cu2+ ions to the transferred hyperfine field on Li+(Na+) ions.  相似文献   

5.
The spectra of electron paramagnetic resonance and inelastic neutron scattering in crystals of the heavy-fermion intermetallic compound YbRh2Si2 are interpreted. The phenomenological potentials of the crystal electric field of Yb3+ tetragonal centers and the parameter of the Hamiltonian for the spin-orbit interaction of electrons are determined from the experimental energy level schemes. A comparison of the results obtained from experimental data on electron paramagnetic resonance, inelastic neutron scattering, and Mössbauer spectroscopy shows that the most probable ground state of Yb3+ ions in the YbRh2Si2 crystal is the Kramers doublet Γ t6 ? .  相似文献   

6.
We report transport, magnetic and thermodynamic properties of the skutterudite compound LaFe4Sb12. The basic features are a large magnetic susceptibility χ(T), and large electronic coefficient γ of the heat capacity. In particular, a T1.35, T1.7, and T-2/3 temperature dependence of the magnetic susceptibility χ(T), resistivity ρ(T), and Grüneisen parameter Γ(T), respectively, is found at low temperature. An overall understanding of these physical properties is achieved, assuming that LaFe4Sb12 is a non-Fermi liquid system close to a ferromagnetic quantum critical point, with a spin fluctuation temperature Tsf=50±15 K.  相似文献   

7.
Multiple energy scales are detected in measurements of the thermodynamic and transport properties in heavy fermion metals. We demonstrate that the experimental data on the energy scales can be well described by the scaling behavior of the effective mass at the fermion condensation quantum phase transition, and show that the dependence of the effective mass on temperature and applied magnetic fields gives rise to the non-Fermi liquid behavior. Our analysis is placed in the context of recent salient experimental results. Our calculations of the non-Fermi liquid behavior, of the scales and thermodynamic and transport properties are in good agreement with the heat capacity, magnetization, longitudinal magnetoresistance and magnetic entropy obtained in remarkable measurements on the heavy fermion metal YbRh2Si2.  相似文献   

8.
The electronic structure and optical properties of the hexagonal intermetallic compound Gd5Si3 are investigated. The spin-polarization calculation of the band spectrum is performed in the local spin density approximation, taking account for the strong electron correlations in the 4 f shell of a Gd ion (LSDA + U method). Optical constants of the compound in the wavelength range of 0.22–15 μm are determined by the ellipsometry technique and some spectral characteristics are calculated. The frequency dependence of optical conductivity in the light quantum absorption region is analyzed on the basis of the calculated electron density of states.  相似文献   

9.
We study the optical-gain characteristics of a Si-based MQW laser, in which the active region has 20 Si0.15Ge0.621Sn0.229 quantum wells separated by 20 Si0.637Ge0.018Sn0.345 barriers. We reach a maximum optical gain of 2300 cm?1 with an estimated carrier concentration of 5·1018 cm?3, which is equivalent to the transparent current density equal to 0.5 kA/cm2. Furthermore, we discuss the optical confinement factor and modal gain. The modal gain depends sensitively on the number of the quantum wells (QWs), and this fact restricts the optical confinement factor. The modal gain of the model we proposed can reach 1500 cm?1 at the injection current density equal to 3 kA/cm2. We hope that our results show the possibility to obtain a Si-based near-infrared laser.  相似文献   

10.
The toughness increment occurring in Si3N4-based composites due to the addition of MoSi2 particles was compared to the predictions of theoretical models based on the combination of residual stresses and crack deflection toughening mechanisms. A direct application of theoretical models led to a substantial discrepancy between predicted and observed values. For this reason, the basic parameters of the theoretical models were experimentally evaluated. The residual stresses were assessed by measuring the strain in the reinforcing particles by X-ray diffraction. Moreover, the MoSi2 interparticle distance was calculated by image analysis and the crack paths were analyzed in order to check the actual extent of crack deflection. The overall toughness increase recalculated as the sum of the newly estimated values of residual stresses and crack deflection contributions, was shown to be in good agreement with the experimental results. PACS 81.05.Je; 81.40.Np  相似文献   

11.
The EPR signal from localized ytterbium ions was observed in an undoped YbRh2Si2 compound with heavy fermions in the temperature range from 1.5 to 25 K. The exponential contribution dominating the temperature dependence of EPR line width at temperatures above 15 K was shown to be caused by the random transitions from the ground to the first excited Stark sublevel of the Yb3+(4f13) ion with the activation energy Δ=115 K.  相似文献   

12.
A complete normal coordinate analysis was performed for five-coordinate non-rigid triarylantimony diester SbPh3(O2CR)2, known to be a bioactive molecule, using Wilson G-F matrix method and Urey Bradley force field. The study of vibrational dynamics was performed using the concept of group frequencies and band intensities.   相似文献   

13.
The preparation of (La9.33−2x/3Sr x 0.67−x/3)Si6O24O2 (0 ≤ x ≤ 2) samples with different amounts of cation vacancies is reported. Structure and unit-cell parameters were deduced by Rietveld analysis of XRD patterns. Structural features that enhance oxygen conductivity in Sr-doped apatites are discussed. Up to three components were detected in 29Si MAS-NMR spectra which change with the amount and distribution of cation vacancies. In general, oxygen conductivity increases with the amount of vacancies at La1 (6h) sites, passing through a maximum for x = 0.4. In the case of activation energy, a minimum is detected near x = 1.2, indicating that entropic and enthalpic change in different ways. The presence of cation vacancies should enhance oxygen hopping along c-axis; however, the analysis of the frequency dependence of conductivity suggests that oxygen motions are produced along three axes.  相似文献   

14.
The magnetic properties of one-dimensional oriented nanowires Ge0.99Co0.01 grown in pores of anodized aluminum oxide membranes are investigate using ferromagnetic resonance spectroscopy. The electron spin resonance signals of the magnetically ordered cobalt subsystem and the charge-carrier subsystem are identified. It is revealed that the anisotropy field at 4 K is equal to 400 Oe and aligned parallel to the nanowire axis. The transverse relaxation time of spin waves at 4 K is estimated to be ~10?10 s. It is shown that the magnetic properties of nanowires are predominantly determined by the ferromagnetism of Co and GeCo alloy clusters.  相似文献   

15.
Crystals of Ca3NbGa3Si2O14 (CNGS) with ordered langasite structure were grown using the Czochralski method along the Cartesian X axis [110]. The as-grown crystals exhibit high optical quality and structure perfection. Optical activities were obtained by measuring polarised transmission at various wavelengths between crossed polarisers using a TU-1900 spectrophotometer and we found that CNGS crystals showed very large values of . PACS 81.10.-h; 42.79.Ci; 78.20.Ek  相似文献   

16.
Low-temperature (T = 7 K) time-resolved selectively photoexcited luminescence spectra (2–6 eV) and luminescence excitation spectra (8–35 eV) of wide-bandgap chrysoberyl BeAl2O4, phenacite Be2SiO4, and beryl Be3Al2Si6O18 crystals have been studied using time-resolved VUV spectroscopy. Both the intrinsic luminescence of the crystals and the luminescence associated with structural defects were assigned. Energy transfer to impurity luminescence centers in alexandrite and emerald was investigated. Luminescence characteristics of stable crystal lattice defects were probed by 3.6-MeV accelerated helium ion beams.  相似文献   

17.
The lead pyrophosphate, Pb2P2O7, compound was prepared by conventional solid-state reaction and identified by X-ray powder diffractometer. Pb2P2O7 has a triclinic structure whose electrical properties were studied using impedance spectroscopy technique. Both impedance and modulus analysis exhibit the grain and grain boundary contribution to the electrical response of the sample. The temperature dependence of the bulk and grain boundary conductivity were found to obey the Arrhenius law with activation energies E g = 0.66 eV and E gb = 0.67 eV, respectively. The scaling behavior of the imaginary part of the complex impedance suggests that the relaxation describes the same mechanism at various temperatures.  相似文献   

18.
Phase equilibria in the Er-Mn-O system have been studied by the static method on vacuum circulation setup at 1010–1160 K with subsequent X-ray diffraction analysis of the quenched solid phases with step-by-step removal of oxygen from the ErMn2O5 compound. It is established that ErMn2O5 dissociation occurs in three stages. The temperature dependences of the equilibrium oxygen pressure are experimentally determined for the found phase equilibria. The changes in the standard thermodynamic functions of the reactions of dissociation and formation of ErMn2O5 and ErMnO3 from elements are calculated.  相似文献   

19.
The temperature dependence of the electrical conductivity of the compound 2,4,4-trimethyl-4,5-dihydro-3H-benzo[b] [1,4] diazepin-1-ium tetrachlorocadmiate in the different phases follows the Arrhenius law. The imaginary part of the permittivity constant is analyzed with the Cole–Cole formalism. In the temperature range 348–394 K, the activation energy of conductivity obtained from complex permittivity in regions I and II are, respectively, 1.03 and 0.33 eV, and E m (in regions I and II are, respectively, 0.97 and 0.36 eV) obtained from the modulus spectra is close, suggesting that the ion transport is probably due to a hopping mechanism. The Kohlrausch–Williams–Watts function, j(t) = exp( - ( \fractt\textKWW )b ) \varphi (t) = \exp \left( { - {{\left( {\frac{t}{{{\tau_{\text{KWW}}}}}} \right)}^\beta }} \right) , and the coupling model are utilized for analyzing electric modulus at various temperatures. The decreasing of β at 373 K is due to approaching the temperatures of change in the conduction mechanism of the sample.  相似文献   

20.
The effect of multiple rolling at room temperature on the structure and crystallization of the Al85Ni6.1Co2Gd6Si0.9 amorphous alloy has been studied using transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction. The total plastic strain is 33%. It has been shown that the deformation results in the formation of aluminum nanocrystals with the average size that does not exceed 10–15 nm. The nanocrystals are formed in regions of localization of plastic deformation. The deformation decreases the thermal effect of nanocrystallization (∼15%) as compared to the heat release at the first stage of crystallization of the unstrained sample. The morphology, structure, and distribution of precipitates have been investigated. Possible mechanisms of the formation of nanocrystals during the deformation have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号