首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The solvation parameter model system constants and retention factors were used to interpret retention properties of 39 calibration compounds on a biphenylsiloxane-bonded stationary phase (Kinetex biphenyl) for acetone-water binary mobile phase systems containing 30–70% v/v. Variation in system constants, phase ratios, and retention factors of acetone-water binary mobile phases systems were compared with more commonly used acetonitrile and methanol mobile phase systems. Retention properties of acetone mobile phases on a Kinetex biphenyl column were more similar to that of acetonitrile than methanol mobile phases except with respect to selectivity equivalency. Importantly, selectivity differences arising between acetone and acetonitrile systems (the lower hydrogen-bond basicity of acetone-water mobile phases and differences in hydrogen-bond acidity, cavity formation and dispersion interactions) could be exploited in reversed-phase liquid chromatography method development on a Kinetex biphenyl stationary phase.  相似文献   

2.
In striving for the best possible separation, the selectivity of stationary phases as an optimization parameter is often underestimated although there are many ways to influence this powerful tool. This review serves to provide an insight into the various ways of adapting the selectivity of a separation in liquid chromatography. Approaches via temperature and flow rate tuning are discussed as a basis followed by focusing on the stationary phase as the superior optimization parameter. Highly selective stationary phases hereby provide an advantage for groups of similar analytes. For more complex mixtures, separations can be improved using mixed-mode technologies where different retention mechanisms are combined. Serial coupling, mixed-bed columns, and stationary phase optimized selectivity liquid chromatography provide solutions to various degrees. Finally, the advantages of stationary phase tuning over adaption of mobile phase and/or temperature are presented in terms of optimum application range.  相似文献   

3.
4.
Surface‐bonded zwitterionic stationary phases have shown highlighted performances in separation of polar and hydrophilic compounds under hydrophilic interaction chromatography mode. So, it would be helpful to evaluate the characteristics of zwitterionic stationary phases with different arranged charged groups. The present work involved the preparation and comparison of three zwitterionic stationary phases. An imidazolium ionic liquid was designed and synthesized, and the cationic and anionic moieties respectively possessed positively charged imidazolium ring and negatively charged sulfonic groups. Then, the prepared ionic liquid, phosphorylcholine and an imidazolium‐based zwitterionic selector were bonded on the surface of silica to obtain three zwitterionic stationary phases. The selectivity properties were characterized and compared through the relative retention of selected solute pairs, and different kinds of hydrophilic solutes mixtures were used to evaluate the chromatographic performances. Moreover, the zwitterionic stationary phases were further characterized by the modified linear solvation energy relationship model to probe the multiple interactions. All the results indicated that the types and arrangement of charged groups in zwitterionic stationary phases mainly affect the retention and separation of ionic or ionizable compounds, and for interaction characteristics the contribution from n and π electrons and electrostatic interactions displayed certain differences.  相似文献   

5.
A series of commercial monomeric and polymeric C(18), C(27), and C(30) stationary phases were compared with immobilized poly(ethylene-co-acrylic acid) stationary phases synthesized in-house. The columns were characterized on the basis of methylene selectivity, silanol activity, metal activity, pore size, shape selectivity, and the ability to separate tocopherol isomers and carotenoid isomers. Monomeric and polymeric C(30) phases were shown to yield excellent separations of the tocopherol isomers while the polymeric C(30) and polyethylene phases were more appropriate to the separation of carotenoids.  相似文献   

6.
Summary Using two polycyclyic aromatic hydrocarbons as solutes, a comparison is made between a bonded liquid crystal stationary phase and a conventional polymeric C-18 phase. The bonded nematic liquid crystal phase was the silanized form of 4-[4-(allyloxy)benzoyl-oxy]biphenyl and the polymeric phase was Vydac 201TP. Both phases display shape and planarity selectivity as indicated by the results of the variable temperature and mobile phase composition studies. The slot theory of retention can be used to explain these results. However, the liquid crystal phase is more sensitive to molecular geometry, probably due to its more ordered structure on the surface. Variable temperature experiments which compare retention during both heating and cooling provides additional support for this conclusion. With the polymeric bonded C-18 phase, each solute had identical retention at the same temperature during both the heating and cooling cycles. On the bonded liquid crystal phase, measurable differences in retention were observed at identical temperatures depending on whether the column was heated or cooled. This effect is attributed to a degree of partially reversible disordering which occurs as the column temperature was increased. However, conditioning with the appropriate mobile phase can restore the original retention characteristics of the bonded liquid crystal phase.  相似文献   

7.
Summary In this work, an optimization procedure for gradient RPLC separation, using ternary mobile phases, is described. This procedure requires eight preliminary experiments in gradient elution mode to predict the retention surface for each solute over the whole triangular space. This is followed by computerized calculations to determine the best ternary gradient elution profile with respect to both selectivity and analysis time. The efficiency of this procedure from the point of view of rapidity and of accuracy, is illustrated for the specific separation of twelve phenyl urea herbicides.  相似文献   

8.
王晓欢  陈磊 《色谱》2018,36(9):850-857
混合模式色谱(MMC)在复杂样品的分离分析方面具有独到的优势,相比于单一模式色谱,MMC受到多种作用控制,保留机理更为复杂。利用巯基-烯点击化学方法分别制备了单配体和双配体两种硫醚嵌入苯磺酸硅胶固定相,通过改变pH、离子强度和有机溶剂强度等流动相条件,以4种碱性药物为模型,对其保留机理进行了探讨。结果表明,两种固定相都具有反相和离子交换的混合保留机理。通过改变流动相中盐浓度、考察溶质保留因子与盐浓度倒数的关系,证明了反相、单纯离子交换和反相协同离子交换三种作用形式的保留模型更为合理。定量研究表明,在两个固定相上,由单纯离子交换和反相协同离子交换构成的总离子交换作用占主导,各作用占比与溶质、流动相组成、固定相配体的类型及其比例等密切相关,并且协同作用对溶质的保留和分离选择性影响很大。混合模式色谱保留机理的研究对于新型固定相设计和复杂体系的分离优化具有重要理论指导意义。  相似文献   

9.
T. Takeuchi  T. Miwa 《Chromatographia》1996,43(3-4):143-148
Summary The retention behavior of dansyl amino acids in micellar liquid chromatography has been examined by using ionexchange-induced stationary phases. Several parameters affected the retention of the analytes, including the type and concentration of micellar agent and modifier ion and the concentration of acetonitrile in the mobile phase. The order of elution of dansyl amino acids obtained with the micellar mobile phase was very different from that observed in conventional reversed-phase liquid chromatography. Fluorescence intensities of some dansyl amino acids were enhanced by the micellar mobile phase.  相似文献   

10.
Summary The retention of 32 monocyclic aromatic compounds and 14 polynuclear aromatic hydrocarbons (PAHs) has been studied on four different bonded phases in each of two mobile phases. An additional data set of 21 monocyclic aromatics judiciously chosen for their well-established solvatochromic parameters, 12 PAHs and 12 polychlorinated biphenyls (containing up to 10 chlorines), were studied on a single column. The results indicate that despite the accuracy of the solvatochromic linear solvation energy method for predicting and correlating the octanol/water partition coefficients and water solubilities of these environmentally important materials, the methodology is limited to only certain types of bonded phases. As a corollary to this observation, we caution others that the common practice of estimating log Kow (Kow=octanol-water partition coefficient) based on measurement of the reversed-phase capacity factors should be limited to specific types of columns. Part 5 of Solute-Solvent Interactions in Chemistry and Biology.  相似文献   

11.
聚N-异丙基丙烯酰胺硅胶键合固定相的制备与评价   总被引:1,自引:0,他引:1  
徐荣来  杨同华  董伟 《色谱》2008,26(2):246-249
以3-巯丙基三甲氧基硅烷为偶联剂,将聚N-异丙基丙烯酰胺(PNIPAM)键合到硅胶上,制得了键合固定相(SI-PNIPAM)填料,并用元素分析、红外光谱等对其进行了表征。以甲醇-水为二元流动相,用多环芳烃、碱性物质对该固定相进行了色谱评价,并考察了该固定相的适用pH范围及水解稳定性。结果表明:该固定相具有较好的色谱性能与温敏特性,并且在pH 2.5~7.5时稳定性良好。  相似文献   

12.
Summary New polyacrylate liquid crystalline compounds were coated onto glass or fused-silica capillary columns as stationary phases and applied to supercritical fluid chromatography. These stationary phases, were very stable: no bleeding was observed at 200°C and up to 200kg/cm2 pressures of carbon dioxide mobile phase. The wide working range of the capillary column was extended below the g-n transition temperature. Isomeric compounds such as - and -methoxynaphthalene, anthracene and phenanthrene and several phenolic compounds were separated.  相似文献   

13.
孙国祥  孙毓庆 《色谱》1995,13(2):80-84
提出了溶剂和溶剂系统向量参数表示方法,给出了正相及反相二元溶剂系统Q值参数表。得到经验公式:R_f=a+blnQ+cQ。  相似文献   

14.
Because of its high conductivity when acid doped, polyaniline is known as a synthetic metal and is used in a wide range of applications, such as supercapacitors, biosensors, electrochromic devices, or solar and fuel cells. Emeraldine is the partly oxidized, stable form of polyaniline, consisting of alternating diaminobenzenoid and iminoquinoid segments. When acidified, the nitrogen atoms of emeraldine become protonated. Due to electrostatic repulsion between positive charges, the polarity and morphology of emeraldine chains presumably change; however, the protonation effects on emeraldine have not yet been clarified. Thus, we investigated these changes by reversed‐phase capillary liquid chromatography using a linear solvation energy relationship approach to assess differences in dominant retention interactions under a significantly varied mobile phase pH. We observed that hydrophobicity dominates the intermolecular interactions under both acidic and alkaline eluent conditions, albeit to different extents. Therefore, by tuning the mobile phase pH, we can even modulate the retention of neutral hydrophobic solutes, such as aromatic hydrocarbons, because the pH‐dependent charge and structure of polymer chains of the emeraldine‐coated silica stationary phase show a mixed‐mode separation mechanism.  相似文献   

15.
Supercritical fluid chromatography was utilized in combination with the Abraham model of linear solvation energy relationship to characterize 11 different HPLC stationary phases. System constants were determined at one supercritical fluid chromatography condition for each stationary phase. The results indicate that several types of silica columns, including type B silica, type C silica, and fused core silica, are very similar in their retention behavior. Several aromatic stationary phases were characterized and it was found that, in contrast to the other phases studied, all of the aromatic stationary phases had positive contributions from the dispersion/cavity (v) term of the linear solvation energy relationship. Several aliphatic phases were characterized and there were several linear solvation energy relationship constants that differentiated the phases from each other, mainly the polar terms (dipolarity and hydrogen bonding). One stationary phase, a fused core pentafluorophenyl (PFP) phase, had very poor regression quality. The column volume of this phase was lower than the others in the study, which may have had some impact on the results of the regression.  相似文献   

16.
The present study described the preparation and application of a reversed-phase/zwitterionic/hydrophilic interaction liquid chromatography stationary phase, named as SIL-PS. The SIL-PS was prepared through a four-step reaction, chemical bonding, nucleophilic addition, SN1 substitution, and sulfonation on the silica matrix. It was featured with C12 alkyl chain, quaternary ammonium, tertiary amine, and sulfonate groups. After SIL-PS was packed into the stainless steel column (150?× 2.1 mm i.d.), chromatographic parameters, including acetonitrile content, pH, and ionic strength of the mobile phase, and the column temperature, were systematically investigated to study the retention mechanism. Electrostatic adsorptive/repulsive, partition, and hydrogen-bonding interactions were demonstrated to contribute to the retention. The stability of the SIL-PS was satisfactory, with relative standard deviations of retention factors of 1.93, 2.08, and 1.90% for loxoprofen, adenosine, and liquiritin, respectively. Additionally, to investigate the separation selectivity, the non-steroidal anti-inflammatory drugs, nucleobases/nucleotides, and alkaloids/glycosides were separated; the HPLC fingerprinting of the Cortex phellodendri extract was also conducted, and the separation performance was superior to that of the C18 column in terms of peak shape, resolution, and analytical time. The results revealed that the prepared SIL-PS possessed multifunctionalities for multiretention and could be promising for complicated samples.  相似文献   

17.
18.
Young TE  Ecker ST  Synovec RE  Hawley NT  Lomber JP  Wai CM 《Talanta》1998,45(6):1189-1199
Reversed phase high-performance liquid chromatography (RP-HPLC) is demonstrated for hydrophobic analytes such as aromatic hydrocarbons on a chemically bonded stationary phase and a mobile phase consisting of only water. Reversed phase liquid chromatography separations using a water-only mobile phase has been termed WRP-LC for water-only reversed phase LC. Reasonable capacity factors are achieved through the use of a non-porous silica substrate resulting in a chromatographic phase volume ratio much lower than usually found in RP-HPLC. Two types of bonded WRP-LC columns have been developed and applied. A brush phase was synthesized from an organochlorosilane. The other phase, synthesized from an organodichlorosilane, is termed a branch phase and results in a polymeric structure of greater thickness than the brush phase. A baseline separation of a mixture containing benzaldehyde, benzene, toluene, and ethyl benzene in less than 5 min is demonstrated using a water mobile phase with 12 000 plates generated for the unretained benzaldehyde peak. The theoretically predicted minimum reduced plate height is also shown to be approached for the unretained analyte using the brush phase. As an application, subcritical water extraction (SWE) at 200°C is combined with WRP-LC. This combination allows for the extraction of organic compounds from solid matrices immediately followed by liquid chromatographic separation of those extracted compounds all using a solvent of 100% water. We demonstrate SWE/WRP-LC by spiking benzene, ethyl benzene, and naphthalene onto sand then extracting the analytes with SWE followed by chromatographic separation on a WRP column. A sand sample contaminated with gasoline was also analyzed using SWE/WRP-LC. This extraction process also provides kinetic information about the rate of analyte extraction from the sand matrix. Under the conditions employed, analytes were extracted at different rates, providing additional selectivity in addition to the WRP-LC separation.  相似文献   

19.
Wang X  Qiu H  Liu X  Jiang S 《色谱》2011,29(3):269-272
采用N-甲基咪唑和氯丙基咪唑反应的方法制备得到了离子液体键合硅胶固定相,并利用该固定相中的咪唑环阳离子和被分析物之间存在的多重作用机理如疏水作用、静电吸引和排斥及氢键作用等,以纯水作为流动相,成功地分离了碱基(胞嘧啶、胸腺嘧啶、2-氨基嘧啶和6-氯鸟嘌呤)、酚类化合物(间氨基酚、间苯二酚和间硝基酚)以及3种药物化合物(盐酸吗啉呱、阿昔洛韦和头孢氨苄)。采用没有添加任何有机溶剂和缓冲液的纯水作流动相,既绿色环保,又节约经济,简单方便。对该固定相分离这些化合物的保留机理做了探讨。  相似文献   

20.
Summary Cellulose and cellulose mono-, di-, and triacetate were used as stationary phases for liquid chromatography with water as a mobile phase, and the retention behavior of alcohols, ethers, ketones, and chlorides was examined. For cellulose acetate columns, the logarithm of the specific retention volume, (logV g * ), correlated linearly with the logarithm of partition coefficient between 1-octanol and water (log Ko/w), for each homologous group, but all solutes were unretained on cellulose columns. With the exception of chlorides, the intercept values of the log V g * –log Ko/w regression lines increased significantly with increase of acetyl content of cellulose acetates, but the slopes of the regression lines changed little. This suggests that hydrophobic interaction between the acetyl groups of cellulose acetates and the alkyl chains of the solutes is the dominant factor in the retention.The capacity factors for 1-alcohols with cellulos diacetate column indicated a maximum at a column temperature of about 40°C. This unique retention behavior was assumed to be caused by small structural change of the cellulose acetate polymer, because this temperature effect on the retention corresponded with effects observed by differential scanning calorimetry (DSC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号