首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以新型“镁铝型甲苯-4-磺酸钠柱撑水滑石”材料为吸附剂,建立了测定谷物中4种卤代苄腈类除草剂残留量的分散固相萃取-气质联用法。样品以10%(V/V)甲醇水溶液涡旋提取,离心后上清液以分散固相萃取方式吸附,以稀硫酸溶解吸附剂、用乙酸庚酯萃取4种卤代苄腈类除草剂并以三甲基硅基重氮甲烷衍生化,气质联用法测定,基质匹配校正曲线外标法定量。结果表明:谷物中4种卤代苄腈类除草剂在20, 50, 200μg/kg添加水平的平均回收率为89.7%~99.8%,相对标准偏差为2.0%~5.5%,方法检出限为1.05~5.89μg/kg,定量限为3.49~19.6μg/kg。  相似文献   

2.
分散固相萃取-气相色谱法测定水产品中氟虫腈残留   总被引:1,自引:0,他引:1  
以乙二胺-N-丙基硅烷(PSA)和十八烷基键合硅胶(C18)为吸附剂,建立了分散固相萃取-气相色谱法检测水产品中氟虫腈的残留量的分析方法。方法采用乙腈提取,正己烷除脂,然后经PSA和C18吸附剂净化后进样分析。方法的线性范围为0.5~25μg/L,相关系数r≥0.9991;当氟虫腈的加标水平在1.2~4.0μg/kg时,其回收率为75.6%~102.8%,相对标准偏差为0.9%~6.4%;方法检出限为0.4μg/kg,定量限为1.0μg/kg。  相似文献   

3.
建立了同时测定竹笋中9种多环芳烃(PCBs)、16种多氯联苯(PAHs)和13种有机氯农药(OCPs)的分散固相萃取-气相色谱法-串联质谱(DSPE-GC-MS/MS)分析方法。竹笋样品经乙腈提取,以无水MgSO_4、弗罗里硅土和十八烷基键合硅胶吸附剂(C18)作为分散固相萃取净化剂净化,经气相色谱-串联质谱测定,外标法定量。结果表明,方法实现了对38种持久性有机化合物的分离和定量,分析物含量在2~1000μg/L范围内线性关系良好,相关系数在0.9960~0.9998之间;方法检出限范围0.035~5.55μg/kg;38种持久性有机污染物在低、中、高添加浓度下的平均加标回收率为67.6%~113.6%,相对标准偏差为1.7%~9.5%。方法可对竹笋样品中38种持久性有机污染物定性和定量。  相似文献   

4.
建立了基质固相分散萃取-分散液相微萃取-气相色谱质谱法测定土壤中3种拟除虫菊酯农药(胺菊酯、氯菊酯、溴氰菊酯)的分析方法。最佳前处理条件为:0.5 g样品与1.5 g C18固相萃取粉末研磨5 min,混合物以10 m L丙酮洗脱并浓缩至0.4 m L,加入20μL四氯化碳和5 m L超纯水形成乳化,离心破乳后吸取1μL沉积相进GC-MS分析。3种拟除虫菊酯类农药在5~200μg/kg范围内有良好的线性关系(r2≥0.9989),平均加标回收率为86.5%~108.0%,相对标准偏差小于7.8%(n=3),检出限为1.00~1.48μg/kg,可满足土壤中微量拟除虫菊酯类农药的分析。  相似文献   

5.
建立了分散固相萃取-分散液液微萃取与气相色谱/质谱联用测定玉米和大米中痕量氟虫腈及其代谢物残留的分析方法。使用乙腈和水混合溶液作为萃取溶剂,盐析后,提取液经N-丙基-乙二胺硅烷固相萃取材料(PSA)作为吸附剂后,采用分散液液微萃取步骤将目标物从到微量四氯乙烯中。对影响分散液液微萃取效率的因素,包括萃取溶剂种类及体积、盐等条件进行了优化。在0.02~1μg/m L浓度范围内,线性关系良好(r≥0.9987)。在玉米和大米样品中氟虫腈添加浓度为1.0~25.0μg/g时,平均回收率在70.4%~95.1%之间,相对标准偏差(n=5)在2.6%~12%之间,以最低添加浓度1μg/kg作为定量限。  相似文献   

6.
采用分散固相萃取和分散液液微萃取方法,建立了气相色谱法快速检测甘蓝中氟氯氰菊酯、氯氰菊酯、溴氰菊酯及氰戊菊酯4种拟除虫菊酯农药残留量的分析方法。使用乙腈作为萃取溶剂,经乙二胺-N-丙基硅烷固相萃取吸附剂净化提取液,分散液液微萃取将农药富集到50μL二甲苯中后,采用气相色谱-电子捕获检测器进行分析。考察了萃取溶剂的种类与体积、分散剂体积及盐效应等因素对分散液液微萃取萃取效率的影响。结果表明:除氟氯氰菊酯在0.01~0.1 mg/L范围外,其余3种拟除虫菊酯农药均在0.01~5.0mg/L范围内线性关系良好,相关系数为0.997 9~0.999 2;加标浓度为0.02~0.5μg/g时,除氟氯氰菊酯外其他拟除虫菊酯农药的平均回收率为81.9%~93.5%,相对标准偏差为9.5%~20.7%。该方法简单、高效、重现性好、富集倍数高,可用于甘蓝中拟除虫菊酯类农药的快速检测。  相似文献   

7.
建立了分散固相萃取-气相色谱测定对虾中12种有机磷农药残留的分析方法。样品经V(冰乙酸):V(乙腈)=1:99溶液提取,采用乙二胺-N-丙基硅烷(PSA)、C18与石墨炭黑(GCB)为吸附剂进行分散固相萃取净化。以DB-17毛细管色谱柱分离,GC-FPD(P)检测。方法在0.01~0.50μg/mL范围内线性关系良好,相关系数(r2)均不低于0.9971,12种有机磷农药的方法检出限均为0.01 mg/kg。在0.01~0.10 mg/kg的添加水平下,平均加标回收率为80.7%~101.2%,相对标准偏差为3.7%~7.6%。  相似文献   

8.
建立了一种测定蔬菜中11种醚类除草剂残留量的分析方法。样品由乙腈提取后经石墨化碳黑和中性氧化铝柱双柱串联固相萃取净化,运用气相色谱-负化学离子源质谱联用-分时段选择离子监测技术测定,外标法定量。11种除草剂在10~200μg/L范围内线性均良好;方法灵敏度高,定量限(LOQ)均低于或等于1μg/kg;方法准确度和精密度高,在4、10、20和40μg/kg 4个添加水平下所有农药的回收率均在70%~120%之间,RSD≤10.3%;方法选择性好,抗干扰能力强,可作为测定各种蔬菜基质中醚类除草剂残留量的确证方法。  相似文献   

9.
建立了基质固相分散萃取-分散液相微萃取-气相色谱质谱联用法测定土壤中5种邻苯二甲酸酯的分析方法。优化了前处理条件,最佳条件为:0.2g样品与0.4g弗罗里硅土研磨8min,混合物以10mL丙酮-乙酸乙酯(1:1,V:V)洗脱,用氮气吹干并用乙腈定容至0.4mL,加入30μL四氯化碳和5mL超纯水形成乳化,离心破乳后吸取1μL沉积相进GC-MS分析。DMP在25~500μg/kg,DEP在10~500μg/kg,DBP、BBP和DNOP在5~500μg/kg范围内线性关系良好,相关系数在0.9983~0.9997,检出限为0.32~2.90μg/kg,平均加标回收率为85.5%~104%,相对标准偏差(n=5)小于8.2%。方法满足实际土壤中微量邻苯二甲酸酯分析的要求。  相似文献   

10.
采用分散固相萃取和分散液液微萃取方法,建立了气相色谱法快速检测甘蓝中氟氯氰菊酯、氯氰菊酯、溴氰菊酯及氰戊菊酯4种拟除虫菊酯农药残留量的分析方法。使用乙腈作为萃取溶剂,经乙二胺-N-丙基硅烷固相萃取吸附剂净化提取液,分散液液微萃取将农药富集到50 μL二甲苯中后,采用气相色谱-电子捕获检测器进行分析。考察了萃取溶剂的种类与体积、分散剂体积及盐效应等因素对分散液液微萃取萃取效率的影响。结果表明:除氟氯氰菊酯在 0.01~0.1 mg/L范围外,其余3种拟除虫菊酯农药均在 0.01~5.0 mg/L范围内线性关系良好,相关系数为0.997 9~0.999 2;加标浓度为0.02~0.5 μg/g时,除氟氯氰菊酯外其他拟除虫菊酯农药的平均回收率为81.9%~93.5%,相对标准偏差为9.5%~20.7%。该方法简单、高效、重现性好、富集倍数高,可用于甘蓝中拟除虫菊酯类农药的快速检测。  相似文献   

11.
采用基质固相分散-超快速液相色谱法测定了山楂片中的苏丹红染料,基质固相分散萃取的最佳条件为:0.45 g硅胶分散剂,6 mL乙酸乙酯作为洗脱剂,样品与分散剂质量比为1∶3。乙腈-水为流动相,流速:0.3 mL/min,进样量:10μL,柱温:30℃,梯度洗脱,4种苏丹红化合物回收率在86.1%~108.3%之间;RSD在2.3%~9.8%之间。测定苏丹红的线性范围为0.01~2.5 mg/kg(苏丹红Ⅰ,Ⅱ和Ⅲ),0.025~2.5 mg/kg(苏丹红Ⅳ),检出限为4.2~8.9μg/kg,检出限优于国标方法,可满足实际样品分析的要求。  相似文献   

12.
采用分散固相萃取和分散液液微萃取联用方法,建立了气相色谱-串联质谱法(GC-MS/MS)同时测定蔬菜中19种有机磷农药残留量的分析方法。分散固相萃取方法以乙腈为萃取液,以N-丙基-乙二胺(PSA)和C18为吸附剂。对影响分散液液微萃取效率的因素(萃取溶剂种类及体积、分散剂体积等)进行优化,同时分析了实验过程中添加掩蔽试剂L-古洛糖酸γ-内酯(AP)对基质效应补偿作用的影响。在最佳实验条件下,19种有机磷在辣椒和大葱中3个添加水平(0.05,0.1,0.5 mg/kg)的回收率为76.9%~126.8%,相对标准偏差为0.6%~7.3%,检出限(S/N=3)为0.10~0.50μg/kg。该方法简单、高效、重现性好、富集倍数高,可用于蔬菜中有机磷农药的快速检测。  相似文献   

13.
建立了同时检测蔬菜中16种多环芳烃(PAHs)和11种卤代多环芳烃(X-PAHs)污染水平的分散固相萃取-气相色谱-串联质谱(GC-MS/MS)分析方法。样品中的多环芳烃和卤代多环芳烃经正己烷提取,N-丙基乙二胺吸附剂(PSA)和十八烷基键合硅胶吸附剂(C18)分散固相萃取净化剂净化,气相色谱-串联质谱方法测定,外标法定量。16种PAHs和11种X-PAHs在50,100和200μg/kg添加浓度下的回收率为74.7%~115.1%,相对标准偏差为1.6%~15.3%,方法检出限为0.03~7.4μg/kg。  相似文献   

14.
气相色谱-质谱联用法测定紫菜中扑草净的残留量   总被引:2,自引:0,他引:2  
建立了固相萃取净化与气相色谱-质谱联用技术测定紫菜中扑草净除草剂残留量的检测方法。样品由乙腈溶剂提取浓缩后,活性炭和氨基柱双柱串联固相萃取净化,由气相色谱-质谱联用技术测定。方法定量限为2μg/kg,满足国外最低10μg/kg的限量要求;方法在10,40和100μg/kg 3个添加水平和不同人员操作条件下,回收率均稳定在90%~120%之间,RSD%≤7.1%。  相似文献   

15.
应用基质固相分散-反相高效液相色谱法提取和测定了水果中三种氨基甲酸酯农药残留。通过实验确定了最佳前处理条件:弗罗里硅土作为萃取吸附剂,样品与吸附剂质量比为1∶4,洗脱剂为丙酮∶二氯甲烷=3∶7(V/V)的混合液,洗脱剂的体积为10 m L。在优化的实验条件下,三种氨基甲酸酯农药的检出限在0.02~0.62μg/g之间,测定的线性范围为0.20~40μg/g,相关系数在0.9957~0.9990之间。方法应用于检测水果样品时,平均加标回收率为80.4%~116.5%,相对标准偏差为0.7%~8.0%。  相似文献   

16.
黄幼芳  刘珺  黄晓佳 《色谱》2022,40(10):900-909
有效萃取是分析复杂样品中苯氧羧酸类除草剂(PAs)残留的关键步骤。为此,该文利用“一锅法”水热技术快速、简便地制备了氨基碳纳米管功能化磁性纳米粒子(NH-CNTs@M)并作为磁固相萃取(MSPE)的萃取介质,用于萃取谷物和蔬菜样品中痕量PAs。研究利用多种手段对NH-CNTs@M的形貌、尺寸、磁性性质等进行了表征,结果表明FeO的粒径、氨基化碳纳米管的直径以及NH-CNTs@M的磁饱和值分别为30 nm、40 nm和44.2 emu/g。详细考察了制备条件和萃取参数对NH-CNTs@M/MSPE萃取性能的影响,结果表明,NH-CNTs@M/MSPE可通过π-π、疏水和氢键作用有效富集目标化合物,最佳萃取条件如下:吸附剂用量为30 mg,解吸溶剂为含2.0%(v/v)甲酸的乙腈溶液,吸附时间和解吸时间分别为8.0 min和3.0 min,基底pH值为6.0,不调节基底的离子强度。将NH-CNTs@M/MSPE与高效液相色谱-二极管阵列检测技术(HPLC-DAD)联用,建立了谷物和蔬菜中PAs的灵敏检测方法。谷物和蔬菜基质中苯氧羧酸类除草剂的检出限(LOD,S/N=3)分别为0.32~1.6μg/kg和0.53~1.6μg/kg,定量限(LOQ,S/N=10)分别为0.94~4.8μg/kg和1.6~4.8μg/kg。在两种实际样品中不同浓度下的加标回收率分别为73.1%~112%和72.3%~113%。与现有方法相比,所建方法具有萃取速度快、灵敏度高和环境友好等特点。  相似文献   

17.
利用顶空固相微萃取(HS-SPME)与气相色谱-三重四极杆质谱(GC-MS/MS)联用,建立了快速测定茶叶中11种酰胺类除草剂残留的检测方法。以全发酵红茶为基质,对影响萃取性能的因素(如萃取涂层种类、无机盐种类、水用量、盐用量、萃取温度和萃取时间)进行了优化。在最优条件下,选取绿茶、乌龙茶、红茶和普洱茶4种茶叶基质对方法学进行考察。结果表明,11种酰胺类农药在1~1 000μg/kg含量范围内线性关系良好,相关系数(r2)为0.992 5~0.999 9,定量下限为1~10μg/kg。11种农药在红茶、绿茶、乌龙茶和黑茶基质中3个添加水平下的平均回收率分别为70.3%~119.1%、85.2%~118.7%和74.6%~113.3%,相对标准偏差(RSD)均不大于17.4%。该方法操作简单、快速、灵敏度高、重现性好,可满足不同种类茶叶基质中11种酰胺类除草剂农药残留的检测要求。  相似文献   

18.
利用溶剂热法构筑了Fe3O4@MOF-808吸附剂,将其用于大米中除草醚(NIT)、乙氧氟草醚(OXY)和甲羧除草醚(BIF)3种二苯醚类除草剂的富集,结合高效液相色谱法,建立了大米中该类除草剂的分析方法。研究通过傅里叶变换红外光谱、X射线衍射仪、扫描电子显微镜以及振动样品磁强计对构筑的磁性吸附剂的结构、表面形貌及磁强度进行表征。表征结果显示,球形的Fe3O4纳米颗粒与八面体形貌的MOF-808成功复合,Fe3O4@MOF-808饱和磁化强度可达40.35 emu/g,可以满足磁性固相萃取的需求;对吸附剂用于大米中3种二苯醚类除草剂富集的磁性固相萃取条件(吸附剂用量、吸附时间、洗脱溶剂种类以及洗脱体积)进行了优化。优化结果显示,25 mg吸附剂在6 min内即可达到对目标物的完全吸附,洗脱溶剂采用0.5 mL×2的甲醇。在最优的磁性固相萃取条件下,结合高效液相色谱-紫外检测法,建立了大米中3种二苯醚类除草剂的分析方法。方法在2~300 μg/L范围内线性关系良好(r > 0.998), NIT、OXY、BIF的检出限和定量限依次为0.6、0.6、0.4 μg/kg和2.0、2.0、1.5 μg/kg,在5、10和20 μg/kg 3个加标水平下的回收率为87.3%~96.7%,相对标准偏差不超过10.8%,且富集因子在25~29之间。将所建方法用于大米中NIT、OXY、BIF的分析,各样品均未检出这3种二苯醚类除草剂。该方法具有操作简单、快速、准确的特点,适用于大米样品中除草剂的残留分析。  相似文献   

19.
邓玉兰  李傲天  王燕飞  孙鹏  苏萍  杨屹 《色谱》2018,36(3):253-260
制备了MIL-53(Fe)和聚多巴胺(PDA)修饰的磁性Fe_3O_4复合材料MIL-53(Fe)@PDA@Fe_3O_4,并将其作为吸附剂用于磁固相萃取-高效液相色谱法(MSPE-HPLC)检测环境水样中4种磺酰脲类除草剂(甲嘧磺隆、苄嘧磺隆、吡嘧磺隆和氯嘧磺隆)。实验优化了高效液相色谱条件(乙腈和含0.01%(体积分数)三氟乙酸的水溶液为流动相进行梯度洗脱,检测波长为233 nm)及磁固相萃取条件(洗脱剂为5 mL丙酮,萃取时间为4.5 min,吸附剂用量为60 mg,NaCl加入量为0.5 g,溶液pH值为3),在最佳条件下进行方法学考察,4种磺酰脲类除草剂均得到良好的线性关系,相关系数(r)≥0.998 0。方法的检出限(LOD,S/N=3)为0.28~0.77μg/L。将建立的方法用于3种环境水样中4种磺酰脲类除草剂的检测,其加标回收率为78.8%~109.7%。结果表明,制备的功能化复合材料结合了MIL-53(Fe)和Fe_3O_4的优点,可以简便快速地萃取分离环境水样中磺酰脲类除草剂。  相似文献   

20.
建立了气相色谱-串联质谱技术对烟草中15种苯氧羧酸类除草剂农药残留量的分析方法。样品采用乙腈提取、Carbon TPT固相萃取柱净化、三甲基硅烷化重氮甲烷衍生化,采用气相色谱-串联质谱对15种苯氧羧酸类除草剂进行测定,通过保留时间、选择离子及相对丰度定性,外标法定量。结果表明,15种苯氧羧酸类除草剂在20~1 000μg/L浓度范围内均呈良好线性关系,相关系数大于0.992,检出限为0.9~3.3μg/kg,定量下限为3.2~10.8μg/kg。在20,100,200μg/kg 3个加标水平下的平均回收率为71.5%~105.6%,相对标准偏差(RSD)为4.5%~14.9%。该方法简便、快速、灵敏,适用于烟草中15种苯氧羧酸类除草剂的同时检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号