首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
魏平玉  杨青林  郭林 《化学进展》2009,21(9):1734-1741
卤氧化铋,BiOX (X=Cl, Br, I)作为一种新型光催化剂,由于具有特殊的层状结构和合适的禁带宽度从而显示出优异的光催化性能。本文主要对微纳米卤氧化铋光催化剂的制备方法、形貌尺寸及光催化性能进行了综述。卤氧化铋的光催化活性普遍优于商品TiO2 (P25)的光催化活性,并且随着卤素原子序数的增加光催化活性逐渐增强。此外,卤氧化铋光催化剂还具有很高的稳定性。借助于掺杂改性,卤氧化铋的光催化性能得到进一步改善;通过晶体结构和能带结构的设计合成可以得到高活性的卤氧化铋化合物光催化剂。最后,对卤氧化铋光催化剂今后的研究方向进行了展望。  相似文献   

2.
抗生素大量使用致使其在水环境中普遍存在,对生态环境和人类健康造成一定威胁。卤氧化铋BiOX(X=Cl, Br, I)具有独特二维层状结构、适宜的禁带宽度等优点而被用作光催化剂来降解水中残留的抗生素。但单一BiOX(X=Cl, Br, I)存在可见光吸收能力偏弱、稳定性不佳等问题,往往需要对其进行复合改性(如金属负载、碳材料修饰及构建异质结)来提升去除水中抗生素的性能。本文主要介绍了用于水体中抗生素类污染物降解的BiOX(X=Cl, Br, I)复合光催化材料的设计合成、活性增强机制以及光催化反应机理。相比于金属负载及碳材料修饰,构建半导体异质结是常用且经济有效地增强BiOX(X=Cl, Br, I)光催化降解水中抗生素性能的方法。指出该领域以后的研究需要评估BiOX(X=Cl, Br, I)复合光催化材料降解水环境中不同类型抗生素的效果,同时还需揭示自然水体的背景成分(如溶解性有机质、无机离子等)对该类复合光催化剂去除水中抗生素活性和稳定性的影响。最后提出引入过氧化物来提升BiOX复合光催化体系矿化水中抗生素的效果以及构建磁性BiOX光催化材料来解决降解反应后的固-液分离问题。  相似文献   

3.
半导体光催化技术不仅可以将太阳能转化为化学能,还可以直接降解和矿化有机污染物,因此其在抑制环境污染和解决能源短缺方面具有广阔的应用前景。类石墨相氮化碳(g-C3N4)具有独特的电子能带结构、优异的热稳定性以及化学稳定性,因此g-C3N4作为一种廉价的无金属光催化剂被广泛应用于光解水制氢产氧、污染物降解、光催化CO2还原、抗菌和有机官能团选择性转换等领域。然而,传统热缩聚法合成的g-C3N4光催化剂比表面积小、禁带宽度大、光生电子-空穴易于复合、光生载流子传输慢,抑制了其光催化活性。为了进一步提高g-C3N4的光催化活性,出现了多种改性方法。本文针对g-C3N4光催化剂的改性研究,综述了近年来国内外在g-C3N4光催化剂改性方面的重要研究进展,如采用模板法优化g-C3N4的纳米结构、元素掺杂及共聚合调控g-C3N4的能带结构、贵金属沉积或半导体复合提高光生载流子分离效率等。最后,本文还展望了g-C3N4光催化剂在改性方面的未来发展趋势。  相似文献   

4.
李仁贵 《催化学报》2018,39(7):1180-1188
氨不仅是一种广泛使用的化工原料,还可用作重要的能源载体.哈伯法合成氨被认为是20世纪最伟大的发明之一,为人类社会的发展做出了巨大贡献.同时,氨合成过程每年需要消耗世界总能源的1%–2%.因此,开发绿色清洁的氨合成方法一直是世界范围内工业界和学术界关注的热点.随着人工光合成太阳燃料研究的蓬勃发展,利用太阳能光催化的方式实现在温和条件下合成氨吸引了越来越多研究者的兴趣,因为这是一条最为理想的能源利用途径,即直接利用太阳能将氮气和水转化为氨.近期,该研究领域涌现了一系列有代表性的研究工作,报道了利用半导体光催化剂实现太阳能到氨的转化,虽然整体效率仍很低,但是已经证明了利用太阳能直接将氮气转化为氨的可能性.光催化合成氨过程中,最具挑战的是氮气分子在半导体光催化剂表面的吸附和活化.研究表明,通过在半导体光催化剂表面引入空位或者缺陷可有效地增加氮气的吸附,且很可能成为氮气分子活化并参与反应的活性中心.此外,借鉴自然界豆类植物固氮酶的独特结构,利用其对于氮气分子高效活化的独特优势,构建自然-人工杂化体系也是提升氮气吸附与活化的有效策略之一.本综述将从合成氨过程中氮气的吸附与活化问题入手,分别从缺陷与空位调控和固氮酶两个方面的策略考虑,结合几个典型的光催化剂体系(如卤氧化铋,二氧化钛及水滑石等)作为示例,介绍空位调控与模拟固氮酶策略对太阳能光催化固氮的影响并分析其可能的机理.虽然人工光合成固氮研究取得了一些进展,但是目前效率太低,亟需从基础科学问题的认识和理解上有新的突破,如氮气分子的吸附与活化微观过程、空位可控调变策略、新型光催化剂的开发与表界面修饰、氨氧化逆反应的抑制策略及精确的理论模拟指导人工光合成固氮体系的构建等.最后,对人工光合成固氮研究方向面临的挑战和未来的发展方向进行了总结与展望.  相似文献   

5.
二氧化钛纳米材料的非均相光催化本质及表面改性   总被引:1,自引:0,他引:1  
温九清  李鑫  刘威  方岳平  谢君  徐悦华 《催化学报》2015,(12):2049-2070
非均相光催化过程是指多相多尺度体系在光辐射作用下发生的一个复杂的催化过程,被认为最有潜力解决环境污染和能源短缺问题的绿色及可再生的技术之一。在目前已经报道的各种非均相光催化剂中, TiO2纳米材料被证实是应用最广泛、光催化效果最好的催化剂,是当前国际材料、环境和能源等领域的研究前沿和热点,高性能TiO2基光催化材料的设计及改性一直是该领域的难点,其关键问题主要为:如何增强TiO2的表面光催化量子效率、促进光生载流子分离和拓展其可见光响应范围。尽管已经有很多关于TiO2光催化的综述,但大多综述集中在高性能TiO2的制备及各种改性策略研究,而对各种改性策略与光催化分子机理之间的关系阐述较少。为此,本文深入分析了TiO2纳米材料的非均相光催化本质并总结了各种表面改性策略。首先从热力学角度阐明TiO2的热力学能带能够确保其实现各种典型光催化反应(包括光催化降解、CO2还原及光解水),证实其广泛应用的可行性。然后,对TiO2光生载流子的动力学基础进行总结,证实快速的广生载流子复合以及较慢的表面化学反应动力学是限制其光催化活性提高的关键制约性因素。于此同时,对TiO2纳米材料的表面Zeta点位、超亲水性、超强酸光催化剂制备(表面羟基取代)等重要的表面化学性质也进行了详细阐述。从而可以初步得出如下结论:表面改性是设计高性能TiO2光催化材料的重中之重,并将各种改性策略浓缩在6个方面:表面掺杂和敏化,构建表面异质结,负载纳米助催化剂,增加可利用的比表面剂,利用表面氟效应以及暴露高活性晶面等。显然,表面掺杂和敏化可以减小TiO2纳米材料的禁带宽度,从而大幅拓宽其可见光吸收范围及光催化效率。而构建紧密的表面异质结可以创建界面电场,不仅可以促进光生电荷分离效率,而且可以有效提高界面电荷转移效率,最终实现异质结的高光催化效率。负载纳米助催化剂则可以大幅加快表面化学反速率,降低光生载流子的表面复合并增加其利用率,并有可能减少不期望的表面逆反应,从而实现光催化活性提升。增加可利用的比表面剂,可以有效提升光催化剂与吸附质之间的有效接触面积,缩短了载流子的传输距离以及通过多次反射与折射提升光能的利用率,从而全方位地提升TiO2纳米材料的光催化活性。对TiO2纳米材料表面进行氟化,可以增加光生羟基自由基的速率以及浓度,并可以通过调节TiO2表面酸碱性而控制其光催化选择性,从而实现高效高选择性光催化。最后,通过暴露TiO2纳米材料的高活性晶面,也可以促进光生载流子分离、增加吸附性能或羟基自由基生成速率,从而获得高光催化效率。另外,这些表面改性策略的协同效应仍是较有前景的TiO2纳米光催化剂改性技术,值得深入研究。同时,深入的光催化分子机理探索仍然是必须的,其不仅有助于发现影响TiO2纳米材料光催化活性提高的关键性制约因素,而且也可以指导开发新型的TiO2纳米光催化剂改性技术。总而言之,通过总结TiO2纳米材料在光催化、表面化学及表面改性等方面的重要进展,可为设计高效的TiO2基及非TiO2基光催化剂并应用于太阳燃料生产、环境修复、有机合成及相关的领域(如太阳能电池、热催、分离和纯化)等提供新的思路。  相似文献   

6.
采用光化学沉积法制备了一系列不同Ag含量的新型Ag/BiOX(X=Cl,Br,I)复合光催化剂,应用X射线粉末衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、光致发光(PL)谱、紫外-可见(UV-Vis)光谱和N2物理吸附等手段对催化剂进行表征,并以420nm<λ<660nm的可见光为光源,评价了该催化剂光催化降解酸性橙II的活性,考察了不同含量的Ag沉积对BiOX样品光催化性能的影响.N2物理吸附测试结果表明,沉积银在一定程度降低了催化剂的比表面积.UV-Vis测试结果表明,Ag能产生表面等离子共振吸收,有效增强BiOCl和BiOBr对可见光的吸收能力.PL测试结果则表明,Ag能显著抑制光生电子(e-)和空穴(h+)的复合.Ag的存在大幅度提高了BiOX对染料的光催化降解活性.当负载Ag的质量分数(w)为1%-2%时,可使BiOCl、BiOBr和BiOI光催化活性分别提高了10、13和2倍.Ag/BiOX复合光催化剂具有更高催化活性的原因是复合光催化剂对可见光有很强的吸收能力,同时产生了银等离子体光催化作用和银抑制了Ag/BiOX(X=Cl,Br,I)的光生电子-空穴的复合.  相似文献   

7.
环境友好型半导体光催化是当前最具前景的光催化技术之一,它不仅能够将太阳能转化为化学能以解决能源危机,还可以将污染物降解矿化从而解决环境问题.但是,传统的半导体光催化剂受限于光利用率低、光生载流子复合率高、稳定性较差等几个方面,无法达到理想的光催化效果.在半导体光催化剂上负载助催化剂是提升光催化效率的有效策略之一.负载助催化剂能够增强光生电荷在半导体与助催化剂界面间的传输,提供额外的催化活性位点,增强光捕获能力,因而被广泛应用于光催化剂的改性.目前广泛使用的贵金属助催化剂包括Au,Ag,Pt,Ru等,虽然这些贵金属助催化剂性能优异,但是它们存在储量少和成本高的问题,严重影响其规模化应用.因此,开展高效且成本低廉的非贵金属助催化剂的研究非常必要.近来,一种新型二维过渡金属材料(MXene)因其具有独特的二维层状结构、优异的导电性能、出色的光学和热力学性质而成为催化领域的研究热点.本文综述了有关非贵金属助催化剂MXene在光催化领域的最新研究进展,内容包括:(1)MXene材料的体相与表面结构特性;(2)薄层MXene的制备方法,例如氢氟酸刻蚀法、氢氟酸替代物刻蚀法以及熔融氟盐刻蚀法;(3)MXene基复合光催化剂的合成及改性策略,包括机械混合、自组装、原位氧化等;(4)MXene辅助增强光催化活性机理.论文还重点介绍了MXene作为助催化剂在光催化领域中的应用,包括光催化分解水产氢、光催化CO2还原、光催化固氮以及有机污染物的光催化降解.最后,论文分析了MXene基异质结光催化剂存在的问题与面临的挑战,并对MXene助催化剂的未来发展进行了展望.主要观点包括:(1)关于光催化分解水、空气净化、合成氨领域的研究较少,需要进一步开展;(2)MXene基异质结光催化剂的反应机理仍存在争议,需采用现代化仪器设备(包括原位表征技术)对其进行更为深入的探究;(3)目前,大多数MXene材料的制备都是通过强腐蚀性的氢氟酸或氢氟酸替代物刻蚀,开发环境友好且高效的MXene制备方法迫在眉睫;(4)阐明MXene表面终端基团的作用有助于提升MXene基复合光催化剂的性能;(5)引入新的改性策略如局域表面等离子体共振效应(LSPR)、缺陷调控、单原子催化(SAC)等来提高MXene基光催化剂的催化性能,是未来MXene基复合催化剂的发展方向.  相似文献   

8.
非均相光催化过程是指多相多尺度体系在光辐射作用下发生的一个复杂的催化过程,被认为最有潜力解决环境污染和能源短缺问题的绿色及可再生的技术之一.在目前已经报道的各种非均相光催化剂中,TiO2纳米材料被证实是应用最广泛、光催化效果最好的催化剂,是当前国际材料、环境和能源等领域的研究前沿和热点,高性能TiO2基光催化材料的设计及改性一直是该领域的难点,其关键问题主要为:如何增强TiO2的表面光催化量子效率、促进光生载流子分离和拓展其可见光响应范围.尽管已经有很多关于TiO2光催化的综述,但大多综述集中在高性能TiO2的制备及各种改性策略研究,而对各种改性策略与光催化分子机理之间的关系阐述较少.为此,本文深入分析了TiO2纳米材料的非均相光催化本质并总结了各种表面改性策略.首先从热力学角度阐明TiO2的热力学能带能够确保其实现各种典型光催化反应(包括光催化降解、CO2还原及光解水),证实其广泛应用的可行性.然后,对TiO2光生载流子的动力学基础进行总结,证实快速的广生载流子复合以及较慢的表面化学反应动力学是限制其光催化活性提高的关键制约性因素.于此同时,对TiO2纳米材料的表面Zeta点位、超亲水性、超强酸光催化剂制备(表面羟基取代)等重要的表面化学性质也进行了详细阐述.从而可以初步得出如下结论:表面改性是设计高性能TiO2光催化材料的重中之重,并将各种改性策略浓缩在6个方面:表面掺杂和敏化,构建表面异质结,负载纳米助催化剂,增加可利用的比表面剂,利用表面氟效应以及暴露高活性晶面等.显然,表面掺杂和敏化可以减小TiO2纳米材料的禁带宽度,从而大幅拓宽其可见光吸收范围及光催化效率.而构建紧密的表面异质结可以创建界面电场,不仅可以促进光生电荷分离效率,而且可以有效提高界面电荷转移效率,最终实现异质结的高光催化效率.负载纳米助催化剂则可以大幅加快表面化学反速率,降低光生载流子的表面复合并增加其利用率,并有可能减少不期望的表面逆反应,从而实现光催化活性提升.增加可利用的比表面剂,可以有效提升光催化剂与吸附质之间的有效接触面积,缩短了载流子的传输距离以及通过多次反射与折射提升光能的利用率,从而全方位地提升TiO2纳米材料的光催化活性.对TiO2纳米材料表面进行氟化,可以增加光生羟基自由基的速率以及浓度,并可以通过调节TiO2表面酸碱性而控制其光催化选择性,从而实现高效高选择性光催化.最后,通过暴露TiO2纳米材料的高活性晶面,也可以促进光生载流子分离、增加吸附性能或羟基自由基生成速率,从而获得高光催化效率.另外,这些表面改性策略的协同效应仍是较有前景的TiO2纳米光催化剂改性技术,值得深入研究.同时,深入的光催化分子机理探索仍然是必须的,其不仅有助于发现影响TiO2纳米材料光催化活性提高的关键性制约因素,而且也可以指导开发新型的TiO2纳米光催化剂改性技术.总而言之,通过总结TiO2纳米材料在光催化、表面化学及表面改性等方面的重要进展,可为设计高效的TiO2基及非TiO2基光催化剂并应用于太阳燃料生产、环境修复、有机合成及相关的领域(如太阳能电池、热催、分离和纯化)等提供新的思路.  相似文献   

9.
李鑫  张太阳  王甜  赵一新 《化学学报》2019,77(11):1075-1088
太阳能驱动光催化反应降解污染物、制备化学燃料或其他高附加值产品是绿色化学和可再生能源研究的重要方向.近年来,在传统的金属氧化物半导体材料之外,金属卤化物钙钛矿类化合物凭借其优异的光电特性也被逐步应用于高效光催化反应中.这篇文章综述了以铅卤钙钛矿为主的金属卤化物钙钛矿材料近年来在光催化领域的研究进展,总结了金属卤化物钙钛矿材料在光(电)催化产氢、CO2还原反应和有机物高附加值转化反应中的应用与反应机制及其关键挑战,最后展望了高效稳定的金属卤化物钙钛矿光催化剂的发展方向和前景.  相似文献   

10.
《广州化学》2015,(4):29-33
以氧化铋为原料,采用水解法合成了溴氧化铋光催化剂,采用X射线衍射仪对溴氧化铋晶体进行表征,研究了溴氧化铋晶体降解罗丹明B溶液的光催化性能。实验结果表明,在反应温度为40℃、反应时间为90 min合成的Bi OBr光催化性能最好,具有较强的光催化活性,其催化活性优于Bi OCl催化剂,其催化降解罗丹明B反应表现为假一级动力学。  相似文献   

11.
太阳能光催化是CO_2转化和利用的新兴技术,直接利用洁净充足的太阳能将自然界富有的"温室气体"CO_2转化成化学燃料,不仅有利于消除大气温室效应,而且能缓解能源短缺问题,因而成为人们研究的一个重要方向.但目前CO_2的吸附和转换效率还很低,这是太阳能光催化CO_2资源化的最大障碍.高性能光催化剂的设计和合成是这项技术的关键.针对CO_2光还原反应的特异性,理想的光催化材料应该具有以下功能:强的CO_2吸附能力和高的光催化活性.将光催化剂与对CO_2具有高吸附性的多孔材料结合,就可以将CO_2吸附并富集在吸附剂周围的光催化剂表面上以进行催化转化,因此基于高效多孔吸附材料构筑光催化体系成为光催化转化CO_2的重要研究方向之一.CO_2的循环利用包括吸附和转化两方面,高吸附量的多孔材料是获得CO_2高转化效率的前提.本文首先以多孔材料结构参数及性能指标为主线,对无机多孔材料、金属有机框架材料及微孔有机聚合物材料的研究进展及应用前景进行了评述.通过对多孔材料的改性和新型多孔材料的开发,CO_2的吸附能力得到一定的提升,但是仅仅依靠多孔材料的吸附分离,不能实现CO_2中的碳资源循环.在此基础上,本文重点评述了多孔光催化材料在CO_2光催化转化中的最新研究进展.采用多孔材料与光催化剂结合,可增加材料的比表面积,在界面处暴露更多的活性位点,有利于光催化CO_2转化的进行;同时,通过孔结构和基团调控,可以调控光催化剂的反应活性和产物选择性.特别是金属有机框架材料与微孔有机聚合物材料,改变构建单元的官能团和制备技术还可以实现光谱响应范围的调控,提高太阳光的利用率.大量文献对比发现,引入较高CO_2吸附效率的多孔材料构建光催化体系,CO_2光催化转化的效率及产物选择性显著提高.最后,本文对多孔材料在CO_2光催化转化领域的研究现状与亟待解决的问题进行了剖析,提出了下一步可能的研究方向:(1)提高多孔材料自身的稳定性如耐水性能与光/热稳定性;(2)发展光催化材料在多孔载体的微观组装方法,不影响CO_2吸附效率的前提下提高光催化活性;(3)深入研究多孔光催化材料内部与表面的CO_2转化机理,为进一步提高吸附与转化效率提供理论指导.  相似文献   

12.
光催化技术因其节能、高效、无二次污染等特点,在低浓度一氧化氮(NO)污染治理方面展现出了巨大潜力。在众多半导体材料中,碘氧化铋(BiOI)光催化剂具有窄带隙和独特的层状结构,有利于可见光吸收和电子空穴对分离,展现出了良好的光催化活性和稳定性,近十几年来备受关注。本文综述了BiOI半导体材料光催化净化NO的最新研究进展,阐述了BiOI晶体形貌与晶面调控对其光催化性能的影响;重点介绍了各类改性方法如表面修饰、离子掺杂、异质结构筑等对BiOI光催化活性的提升机制,并提出了该研究方向所面临的挑战与应用前景,旨在为设计高活性BiOI基光催化材料以及高效处理低浓度NO污染提供理论借鉴与技术支撑。  相似文献   

13.
自从Fujishima和Honda利用TiO_2光阳极和Pt电极成功实现太阳能光电化学分解水之后,光催化被认为是解决环境污染和能源短缺两大问题最有前景的方法之一,因为该技术可以有效的利用太阳能这种地球上最丰富的能源来驱动多种不同的催化反应实现能源生产和环境净化,比如:水分解、CO_2还原、有机污染物降解和有机合成等。除了金属氧化物、金属硫化物和金属氮氧化物等多类金属化合物半导体光催化剂,近几年,石墨相氮化碳(g-C_3N_4)因其原料来源广泛、无毒、稳定以及相对较窄的带隙(2.7 eV)而具备可见光响应等特点,在光催化领域获得了广泛的重视。然而,gC_3N_4对太阳光谱中可见光的吸收效率较低且光生电子和空穴复合严重,导致其光催化活性处于较低水平。至今,研究人员已经开发出多种提高g-C_3N_4光催化活性的方法,如元素掺杂、微纳结构和异质结构设计和助催化剂修饰等。元素掺杂被证明是调节g-C_3N_4独特电子结构和分子结构的有效方法,可以大幅扩展其光响应范围,并促进光生电荷分离。特别地是,非金属元素掺杂以提高g-C_3N_4的光催化活性已经得到很好的研究。通常用于掺杂g-C_3N_4的非金属元素是氧(O)、磷(P)、硫(S)、硼(B)、卤素(F、Cl、Br、I)和其他非金属元素(如碳(C)和氮(N)自掺杂),因为这些非金属元素有着易于获取的原材料并可以较为简单的引入g-C_3N_4骨架结构中。在这篇综述文章中,作者首先介绍了g-C_3N_4的结构和光学性质,接着简要介绍了光催化剂的g-C_3N_4的改性;然后详细回顾了非金属掺杂改善g-C_3N_4光催化活性的进展,同时总结了光催化机理以期更好地理解光催化的本质并指导新型g-C_3N_4光催化剂的开发。最后,对g-C_3N_4光催化剂的后续研究进行了展望。  相似文献   

14.
王保伟  孙启梅 《化学通报》2012,(12):1059-1068
实现太阳光光催化水解制氢一直被各国学者认为是最终解决能源和环境问题的最佳途径。有效地实现可见光催化水解制氢技术的关键在于光催化材料的制备及其改性。本文简要介绍了光催化水解制氢的发展现状、存在的困难及如何提高光分解水的效率,重点评述了现阶段研究比较多的光催化材料—TiO2类光催化剂、新型碳材料光催化剂、含氮或硫的光催化材料、双光子系统光催化材料。最后,结合现有的光催化水解现状对其未来的发展趋势及今后该领域的研究重点进行了展望。  相似文献   

15.
光催化二氧化碳还原成烃类化合物是解决能源短缺和环境污染的重要途径。而构建复合物光催化剂可以有效地解决单一光催化剂的缺点,并且提高二氧化碳还原活性。尽管对复合物光催化剂已经做了很多研究,然而对其活性增强的内在机制还缺乏理论认识。本文采用密度泛函理论计算方法研究了二维/二维BP/g-C_3N_4复合模型的电子性质和CO_2还原反应过程。通过对能带位置和界面电子相互作用的综合分析发现,在BP/g-C_3N_4异质结中,光生载流子的迁移遵循S型异质结光催化机制。与单一的g-C_3N_4相比,这种异质结可以实现光生载流子的高效分离并且拥有良好的氧化还原能力。此外,通过对比研究CO_2在g-C_3N_4和BP/g-C_3N_4还原反应过程发现,异质结使CO_2还原反应的最大能垒从1.48 e V降低到1.22e V。因此,BP/g-C_3N_4异质结在理论上被证明是一种优良的CO_2还原光催化剂。这项工作有助于了解BP改性对g-C_3N_4光催化活性的影响,也为其他高性能CO_2还原光催化剂的设计提供理论依据。  相似文献   

16.
非金属改性可见光诱导的TiO2光催化   总被引:4,自引:0,他引:4  
刘中清  葛昌纯 《化学进展》2006,18(2):168-175
为拓展二氧化钛的光响应波长范围并提高其光催化活性,通常采用掺杂金属、金属氧化物或金属离子的方法。大量研究表明,掺杂金属、金属氧化物或金属离子往往以损失TiO2光催化剂在紫外光区的光催化活性为代价,而掺杂非金属离子不但能将TiO2的光响应波长拓展至可见光区域外,还能保持在紫外光区的光催化活性,在利用太阳光光催化方面展现出崭新的应用前景。本文综述了非金属氮、碳、硫、氟等掺杂改性二氧化钛光催化的最新进展。  相似文献   

17.
光催化作为一种环境友好型、低能耗的技术,在环境净化等领域倍受关注.传统光催化剂,如TiO2,ZnO,V2O5和WO3等具有较高的光敏性,其价格低廉,自然无毒,常用于光电反应的应用当中.然而,这些催化剂具有较宽的禁带宽度,只能在紫外光下响应.为此,设计一种较窄带隙的高可见光活性的光催化剂具有一定的意义.近年来,氯氧化铋光催化剂受到了越来越多的关注,其在紫外光下具有非常优异的光催化性能.并且,研究者们已成功合成出非化学计量比的氯氧化铋,如Bi3O4Cl(2.60 eV),Bi12O17Cl2(2.10 eV),Bi12O15Cl6(2.86 eV)和Bi24O31Cl10(2.70 eV)等光催化剂.研究表明,较低的Cl/O比可能会减小催化剂的带隙宽度,并提高其光催化性能;其中Bi12O17Cl2的Cl/O比最小,是最有潜力的氯氧化铋光催化剂.然而,Bi12O17Cl2具有较高的光生电子空穴复合率,会极大的减弱其光催化活性.因此,将Bi12O17Cl2与具有高稳定性,结构相似且空穴复合率低的Bi OCl相结合,将会极大提高在可见光下Bi12O17Cl2的光催化活性.本文采用了超声水热法成功制备了具有高可见光催化活性的Bi OCl-Bi12O17Cl2纳米复合材料,用于去除染料和药物废水.扫描电子显微镜和比表面积分析仪的结果表明,纳米复合材料具有良好的分散性,结构为花瓣形状,其平均厚度为20至50 nm,且具有较高的比表面积.紫外-可见漫反射和光致发光光谱分析表明,纳米复合材料具有良好的可见光吸收性能,并且光生电子空穴复合率远低于Bi12O17Cl2.其在可见光下降解罗丹明B(/环丙沙星)的动力学常数分别约为Bi12O17Cl2,BiOCl和P25的8.14(/4.94),64.66(/11.91)和42.63(/36.07)倍.合适的形态,结构和光电性能是此纳米复合光催化剂具有优异光催化性能的原因.此外,该催化剂还显示出较宽的pH适用范围和优异的可重复利用性,有利于实际利用.机理研究表明,降解罗丹明B的主要活性物质是光生空穴和超氧自由基.总之,本文开发了一种绿色、稳定、高效的可见光光催化剂,对BiOCl基的光催化剂的研究作出了一定的贡献.  相似文献   

18.
为拓展二氧化钛的光响应波长范围并提高其光催化活性,通常采用掺杂金属、金属氧化物或金属离子的方法。大量研究表明,掺杂金属、金属氧化物或金属离子往往以损失TiO2光催化剂在紫外光区的光催化活性为代价,而掺杂非金属离子不但能将TiO2的光响应波长拓展至可见光区域外,还能保持在紫外光区的光催化活性,在利用太阳光光催化方面展现出崭新的应用前景。本文综述了非金属氮、碳、硫、氟等掺杂改性二氧化钛光催化的最新进展。  相似文献   

19.
受植物光合作用的启发,研究者发展了多种模拟光合作用体系用于光分解水、二氧化碳光还原和氮光固定以生产"太阳燃料"(如氢气、甲烷和氨气),以期缓解当前的能源短缺和环境污染。尽管基于人造半导体材料的光合作用是一种潜在、理想的以"太阳燃料"的化学键形式存储太阳能的方法,但是构筑能够在规模和成本方面与化石燃料竞争的生产"太阳燃料"的人工光合作用体系仍然存在巨大的挑战。因此,开发低成本的高效光催化剂对于促进人工光合作用的三种主要光催化过程(光俘获、电荷产生与分离,以及表面/界面催化反应)具有重要的意义。在已研究的各类光催化剂中,Z-型异质结复合体系不仅可以提高光俘获能力和显著抑制电荷载流子复合,而且还可通过保持光激发电子/空穴的强还原/氧化能力来促进表面/界面催化反应,因而受到广泛关注。将太阳能转化为化学能的Z-型纳米异质结的研究证明这些异质结在提高生产"太阳燃料"的光催化反应体系的整体效率方面的重要性。该综述主要介绍了Z-型异质结的发展历史和直接Z-型异质结相较于传统II型异质结、液相Z-型和全固态Z-型异质结的优势,并阐述了两步激发Z-型光催化体系的反应机理和途径。然后,从材料组成角度重点介绍了近5年来不同类型Z-型纳米结构材料(无机,有机和无机-有机复合材料)在光催化能源转换领域的应用,以及提高Z-型纳米结构材料光催化性能的各种调控/工程策略(如扩展光谱吸收区、促进电荷转移/分离和表面化学改性等)。此外,还讨论了Z-型光催化机理的表征方法与策略(如金属负载法、牺牲试剂测试法、自由基捕集实验、原位X-射线光电子能谱、光催化还原实验、Kelvin探针力显微镜、表面光电压光谱、瞬态吸收光谱及理论计算等)及光催化性能的评价方法和标准。最后,介绍了Z-型异质结光催化体系目前面临的挑战和发展方向。我们希望该综述能为光催化体系的性能突破方向提供新的认识,并为新型Z-型光催化材料的设计和构筑提供指导。  相似文献   

20.
为拓展二氧化钛的光响应波长范围并提高其光催化活性,通常采用掺杂金属、金属氧化物或金属离子的方法.大量研究表明,掺杂金属、金属氧化物或金属离子往往以损失TiO2光催化剂在紫外光区的光催化活性为代价,而掺杂非金属离子不但能将TiO2的光响应波长拓展至可见光区域外,还能保持在紫外光区的光催化活性,在利用太阳光光催化方面展现出崭新的应用前景.本文综述了非金属氮、碳、硫、氟等掺杂改性二氧化钛光催化的最新进展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号