共查询到20条相似文献,搜索用时 31 毫秒
1.
无人机多光谱遥感在玉米冠层叶绿素预测中的应用研究 总被引:6,自引:0,他引:6
叶绿素含量是植物生长中的重要参数,与农作物产量密切相关。无人机遥感技术作为一种新的数据获取手段,在农业中已得到广泛应用。以玉米为目标作物,将具有不同光谱响应函数的两种轻小型多光谱传感器(MCA和Sequoia),同时搭载在六旋翼无人机上,获取不同氮肥水平下大田玉米花期的多光谱影像。利用无人机影像空间分辨率高的特点,在小区尺度上,分别计算了基于两种多光谱传感器的各26种植被指数,并将其与地面实测的叶绿素含量(SPAD)值进行回归分析,研究不同波段反射率对SPAD值的敏感性,利用不同多光谱传感器及植被指数预测SPAD值的精度及稳定性。结果表明,对于具有较宽波段的Sequoia,在550 nm(绿波段)、735 nm(红边波段)的反射率对SPAD值的变化较敏感,其中,550 nm与SPAD值的相关系数最大(R2=0.802 9)。而对于较窄波段的MCA,720 nm(红边波段)的反射率与SPAD值具有较高的相关性(R2=0.724 8),550 nm(绿波段)次之。此外,由于两传感器红波段的中心波长和波段宽度不同,660 nm(Sequoia)反射率与SPAD值的相关系数为0.778 6,而680 nm(MCA)反射率与SPAD值的相关性较小,仅为0.488 6。利用无人机多光谱遥感技术预测大田玉米的SPAD值精度较高,但对于不同的多光谱传感器而言,同一植被指数却表现出较大的差异,其中,红波段和近红外波段组合构造的植被指数RVI,NDVI,PVI和MSR差异较大,具有较宽波段的Sequoia传感器优于窄波段的MCA;此外,对于Sequoia相机,GNDVI与RENDVI预测SPAD值的精度较高,RMSE分别为3.699和3.691;对于MCA相机,RENDVI预测精度最高(RMSE=3.742),GNDVI预测精度低于RENDVI(RMSE=3.912);两传感器中MCARI/OSAVI预测SPAD值精度均较低,RMSE分别为7.389(Sequoia)和7.361(MCA)。在所有的植被指数中,利用绿波段和近红外波构造的植被指数(G类),以及用红边波段和近红外波段构造的植被指数(RE类),预测SPAD值精度更高,均高于红外和近红外波段构造的植被指数;利用更多波段(三个及以上)组合构造的复杂植被指数,并不能显著提高预测精度。就预测模型而言,MCARI1更适用于对数模型,可有效提高预测精度, 而其他植被指数变化不显著。研究还发现,在小区水平SPAD值的预测方面,除NDVI和TVI,Sequoia相机对于不同氮肥条件下植被覆盖度、阴影和裸露土壤等环境背景因素具有较强的抗干扰能力;而对于MCA相机来说,TVI,DVI,MSAVI2,RDVI和MSAVI对环境背景因素非常敏感,预测SPAD精度低;此外,去除环境背景因素并不总是能够提高SPAD值的预测精度。本研究对于利用无人机多光谱遥感技术进行高精度的叶绿素含量预测具有指导意义,对于精准农业的推广和应用具有一定的借鉴价值。 相似文献
2.
植被冠层水平叶绿素含量的高光谱估测 总被引:4,自引:0,他引:4
植物的叶绿素含量指示了其健康状况。大区域范围内植被叶绿素含量信息的提取可以用于评价植被的生长状况,实现对生态环境的监测。对于农田系统而言,作物叶绿素含量的估测还可以对施肥等田间操作提供支持。文章利用辐射传输模型模拟多组不同状态下的植被冠层光谱反射率,通过对模拟数据的冠层叶绿素含量以及冠层光谱之间关系的分析,构建了估测植被冠层水平叶绿素含量的光谱指数模型。该模型对冠层叶绿素含量的方差解释量达到了75%以上。分别使用野外实测冠层光谱和Hyperion高光谱遥感影像对试验区进行验证。结果证明该模型对冠层水平的叶绿素含量估测效果较好,具有应用价值。 相似文献
3.
温室蔬菜病害的发生及大面积流行严重影响设施农业的生产管理, 大大降低设施农业的经济效益。为了实现温室蔬菜病害的无损准确预测, 以黄瓜霜霉病害为例, 利用激光诱导叶绿素荧光构建光谱特征指数, 建立了温室蔬菜病害的预测模型。在试验中采用对比分析的方法, 通过对作物健康叶片接种病菌孢子, 分别采集健康、接种2 d、接种6 d和出现明显病症共4组试验样本的光谱曲线, 定性分析了荧光强度随叶片样本感染病菌孢子的变化规律;利用光谱曲线不同波段峰谷值创建了叶绿素荧光光谱指数k1=F685/F512和k2=F734/F512, 根据数值的变化范围, 设定k1和k2分别为20和10时可以作为判断样本出现明显病症与未出现明显病症的特征值, 其判断的准确率分别达到96%和94%;利用构建的光谱指数与样本健康状况的分类结果, 选择光谱指数F685/F512,F685-F734,F715/F612可以定性判断样本健康状况, 并选择光谱指数F685/F512,F734/F512,F685-F734,F715/F612作为建立定量分析模型的输入量, 以预测集分类准确率作为评价标准, 对比判别分析、BP神经网络、支持向量机三种数据建模方法, 结果表明支持向量机作为霜霉病害预测的建模方法, 其预测能力达到91.38%。利用激光诱导叶绿素荧光构建光谱指数方法, 研究植物病害的预测问题, 具有很好的分类和鉴别效果。 相似文献
4.
为了提高马铃薯叶绿素含量估算模型的精度,使用无人机平台搭载多光谱相机,获取对照处理和干旱处理下马铃薯关键生育期的遥感影像,选取13种植被指数作为叶绿素含量反演模型的输入变量,使用多元线性回归(MLR)、支持向量回归(SVR)、随机森林回归(RFR)、决策树回归(DTR)构建马铃薯叶绿素含量估算模型。首先分析了植被指数与叶绿素含量之间的相关性,结果表明,在对照处理块茎形成期,CIre、 GNDVI、 NDVIre、 NDWI、 GRVI、 LCI与叶绿素含量之间的相关系数绝对值在0.5以上,且存在显著(p<0.05)或极显著(p<0.01)相关性;在马铃薯其他生育时期,13种植被指数与叶绿素含量之间的相关系数绝对值均在0.5以上,且存在极显著(p<0.001)相关性。然后对MLR、 SVR、 RFR和DTR等模型的精度进行比较,结果表明:SVR模型在对照处理块茎形成期、块茎膨大期和淀粉积累期的预测效果均是最佳,R2和RMSE在块茎形成期为0.89和2.11,块茎膨大期为0.59和4.03,淀粉积累期为0.80和3.18; RFR模型在干旱处理块茎形... 相似文献
5.
综合使用光谱技术对作物养分进行实时、有效诊断,有助于作物的精准管理、保障产量和减少环境污染,提高肥料利用率,并且为定量估测作物生化组分状况提供了一种新的途径.光谱指数是进行作物叶片叶绿素实时估测的重要指标,然而由于受到环境条件及内在生化成分的影响,估测结果不尽满意.为了进一步提高光谱指数在估测作物叶片叶绿素含量时的抗干... 相似文献
6.
基于多光谱成像的番茄叶片叶绿素含量预测建模方法研究 总被引:2,自引:0,他引:2
传统的光谱分析技术预测植物的叶绿素含量的精度较低,而基于3CCD的多光谱摄像机的叶绿素预测研究存在其摄像机本身成本昂贵和无法调整的波长通道数等局限性.文章提出了基于多光谱图像技术利用敏感波长(532,610和700 nm)下番茄叶片的灰度值来预测其叶绿素含量的研究方法.利用多元线性回归分析、主成分分析和偏最小二乘回归分析等方法建立了预测模型,取得了较好的预测效果,其相关系数R2c与R2v均达到了0.9左右.表明该方法用于番笳叶绿素的预测是有效和可行的,也为作物的长势检测仪器的开发奠定了基础. 相似文献
7.
利用高光谱植被指数估测苹果树冠层叶绿素含量 总被引:8,自引:0,他引:8
叶绿素含量是反映植物生长状况的重要参数。利用ASD FieldSpec 3光谱仪,测定春梢停止生长期苹果冠层高光谱反射率,对原始光谱进行微分变换,与苹果叶绿素含量进行相关分析确定敏感波段,通过分析敏感区域400~1 350 nm范围内所有两波段组合的植被指数,选择最佳植被指数并建立苹果冠层叶绿素含量估测模型。结果表明:(1)苹果冠层叶绿素含量的敏感波段区域为400~1 350 nm。(2)利用筛选得到的植被指数CCI(D794/D763)构建的估测模型能较好的估测苹果冠层叶绿素含量。(3)以CCI(D794/D763)指数为自变量的估测模型CCC=6.409+1.89R3+1.587R2-7.779R预测效果最佳。因此,利用高光谱技术能够较快速、精确的对苹果冠层叶绿素含量进行定量化反演,为苹果长势的遥感监测提供理论依据。 相似文献
8.
支持向量机作为一种经典的分类方法被广泛应用于恒星光谱分类领域。该方法在实际应用中取得了较为理想的分类效果,但其面临无法解决多分类问题的挑战。在支持向量机的基础上,提出多类支持向量机,建立基于多类支持向量机的恒星光谱分类模型。该方法的最大优势是经过一次分类过程,可以确定多类样本的类属。SDSS DR8恒星光谱数据上的比较实验表明,本研究所提的方法较之已有多分类方法在分类性能上有一定的提升。 相似文献
9.
田间烟叶色素含量的光谱无损快速测量,对烟草营养生长期的营养诊断与长势监测、成熟期的烟叶品质评判具有重要的生产指导意义。该研究的目的是利用烟叶田间光谱估测烟叶的叶绿素和类胡萝卜素含量。研究采集了营养生长期和成熟期烟叶田间反射光谱,测量了样品烟叶的色素含量,利用支持向量机(SVM)和光谱指数法,对营养生长期和成熟期烟叶样品用分期建模和混合建模两种方法建立色素含量估测模型,并对模型的预测性能进行比较。研究结果表明,分期建模和混合建模对于烟叶色素含量的估测效果差异不显著。对于叶绿素含量,SVM和光谱指数法均有较好的估测效果;对于类胡萝卜素含量,SVM方法比光谱指数法具有更高的估测精度。采用SVM方法对烟叶样品的叶绿素含量分期建模得到的估测决定系数和均方根误差分别为0.862 9和0.015 5,对叶绿素含量混合建模得到的估测决定系数和均方根误差分别为0.898 5和0.012 3;采用SVM方法对烟叶样品类胡萝卜素含量分期建模得到的估测决定系数和均方根误差分别为0.873 0和0.002 4,对类胡萝卜素含量混合建模得到的估测决定系数和均方根误差分别为0.852 7和0.002 4。该研究的创新点是通过支持向量机和光谱指数法采用分期建模以及混合建模的方式建立了烟叶样品色素含量的估测模型,为烟草田间生产的质量控制、烟叶的采收品质保证提供科学依据和技术支持。 相似文献
10.
苹果树叶片叶绿素含量高光谱估测模型研究 总被引:12,自引:0,他引:12
叶片叶绿素含量是评估果树长势和产量的重要参数,实现快速、无损、精确的叶绿素含量估测具有重要意义。本研究以山东农业大学苹果园为试验区,采用高光谱分析技术探索苹果树叶片叶绿素含量的估测方法。通过分析叶片高光谱曲线特征,对原始光谱分别进行一阶微分、红边位置以及叶面叶绿素指数(LCI)变换,分别将其与叶绿素含量进行相关分析及回归分析,建立叶绿素含量估测模型并进行检验,从中筛选出精度最高的模型。结果显示,以LCI为变量的估测模型以及以一阶微分521和523nm组合为变量的估测模型拟合精度最高,决定系数R2分别为0.845和0.839,均方根误差RMSE分别为2.961和2.719,相对误差RE%分别为4.71%和4.70%。因此LCI及一阶微分是估测苹果树叶片叶绿素含量的重要指标。该模型对指导苹果树栽培生产具有积极意义。 相似文献
11.
基于无人机多光谱图像的土壤水分检测方法研究 总被引:1,自引:0,他引:1
以表层土壤为对象,探究土壤的多光谱反射率与土壤水分含量相关性,进行基于无人机多光谱图像的土壤水分含量预测模型方法的探究。选取中国农业大学通州实验站为研究区域,实地采集试验田的土壤样本100组,按照一定梯度配制土壤含水量,配成的土壤含水率为10%~50%之间,土壤含量的真实值采用土壤烘干法进行测定。多光谱相机灵巧便捷,可搭载在无人机上对土壤进行监测。将RedEdged-M型多光谱相机搭载在Phantom 3型无人机上,选择阳光充足的采集环境,实时采集土壤样本的多光谱图像,建立土壤多光谱信息与水分含量之间的模型。利用处理光谱数据的ENVI5.3软件提取土壤样本多光谱信息,以多光谱相机自带的标准白板反射率为100%,计算出土壤样本在蓝、绿、红、红边、近红外五个波段的光谱反射率。采用BP神经网络算法、支持向量机算法、偏最小二乘算法分别建立基于无人机多光谱图像的土壤水分含量的预测模型。以80组土壤样本数据作为训练集,建立基于多光谱图像的土壤水分含量预测模型。采用莱文贝格-马夸特算法对BPNN进行改进,提高了其训练速度,当网络结构为5-10-1时,训练效果最好,本文选择该网络结构;SVM采取高斯核函数,当参数为0.56时,模型效果最好。本研究采用归一化均方根误差(NRMSE)和决策系数(R 2)对三种土壤水分含量的预测模型进行定量对比。以20组土壤样本数据作为测试集,结果可知,基于BP神经网络土壤水分含量预测模型的NRMSE为0.268,R 2为0.872;基于支持向量机的土壤水分含量预测模型的NRMSE为0.298,R 2为0.821;基于偏最小二乘土壤水分含量预测模型的NRMSE为0.316,R 2为0.789。对三种模型分析可知,基于BPNN的土壤水分含量预测模型效果均较好。结果可知,土壤的光谱反射率与含水率间存在较密切的相关性,将多光谱相机搭载在无人机上可以对土壤水分含量进行有效的实时监测,对监测土壤墒情提供技术支持和理论支撑。 相似文献
12.
LI Cui-ling JIANG Kai FENG Qing-chun WANG Xiu MENG Zhi-jun WANG Song-lin GAO Yuan-yuan 《光谱学与光谱分析》2018,38(1):151-156
甜瓜的品种多样,富含多种营养成分,甜瓜种子品种不纯将对甜瓜生产造成一定危害,研究采用种子的叶绿素荧光光谱结合反射光谱的分析方法鉴别甜瓜种子品种,以甜瓜品种“一特白”、“一特金”、“京蜜7号”、“京蜜11号”、“伊丽莎白”为研究对象。构建了甜瓜种子品种鉴别光谱系统,包括激发光源单元、光谱数据采集单元和数据处理单元,使用该系统获取不同品种甜瓜种子的光谱数据。对光谱数据分别进行一阶导数(first derivative, FD),Savitzky-Golay(SG) 平滑,FD结合SG平滑预处理。采用主成分分析(principal component analysis, PCA)方法降低光谱数据的维数,提取主成分。使用两种不同分组方法将样品按照3∶1的比例分为训练集和验证集,并分别采用Fisher判别和Bayes判别分析方法建立甜瓜种子品种的判别模型。本文比较了仅使用叶绿素荧光光谱与使用叶绿素荧光光谱结合反射光谱建立判别模型的判别结果,结果显示,使用叶绿素荧光光谱结合反射光谱建模的判别结果优于仅使用叶绿素荧光光谱建模的判别结果,Fisher判别分析和Bayes判别分析的验证集样品品种的判别正确率均达到98.0%。研究结果表明,采用叶绿素荧光光谱结合反射光谱鉴别甜瓜种子品种具有可行性。 相似文献
13.
拉曼光谱和MLS-SVR的食用油脂肪酸含量预测研究 总被引:1,自引:0,他引:1
为实现食用植物油中饱和脂肪酸、油酸、亚油酸含量的快速预测,对一批纯食用油以及不同比例两两混合油共91个样品进行了拉曼光谱检测,在800~2 000 cm-1范围内,通过基于寻峰算法的自动确定支点的基线拟合方法,对获得的光谱数据进行预处理,提取八个特征峰作为拉曼光谱的特征值。以这些特征值为输入,以样品油中实际饱和脂肪酸、油酸、亚油酸含量为输出,运用偏最小二乘回归(PLS)和多输出最小二乘支持向量回归机(MLS-SVR)方法,分别建立了可以同时预测三种脂肪酸含量的数学模型,结果表明MLS-SVR方法具有较好的效果。将MLS-SVR模型的预测结果与气相色谱法结果相比较,可得到三种脂肪酸的预测均方根误差分别为0.496 7%,0.840 0%和1.019 9%,相关系数分别为0.813 3,0.999 2和0.998 1;对未知样品三种脂肪酸的预测均方根误差不超过5%。表明,拉曼光谱和MLS-SVR相结合的食用油脂肪酸含量预测方法,具有快速、简便、无损、准确等优点,为食用油脂肪酸含量分析提供了一种可行的方法。 相似文献
14.
15.
基于二维相关光谱的水体叶绿素含量探测 总被引:1,自引:0,他引:1
利用Shimadzu UV2450分光光度计测量了含有不同叶绿素浓度的湖水样本在可见光和近红外区域的透射光谱,并使用实验室手段测量了水体的叶绿素含量。分析了湖水样本的透射光谱特性,同时引入二维相关光谱技术,利用叶绿素浓度值作为微扰量,得到水体叶绿素的动态光谱,进而结合二维同步谱图和异步谱图确定表征水体叶绿素浓度的特征波段。综合观察二维相关光谱中的同步谱图和异步谱图,更加精确地阐明了水体光谱特征,同时剔除水体中其他物质对于光谱信息的影响,更有效、全面地提取反映水体叶绿素信息的敏感波段。利用所选特征波段构建归一化水体叶绿素指数,将特征波段与叶绿素指数分别与水体叶绿素浓度建立线性预测模型。结果显示,归一化水体叶绿素指数的预测模型测定R2达到0.771 2,均方根误差是45.509 8 mg·L-1,预测R2达到0.765 8,均方根误差是39.503 8 mg·L-1。模型精度较利用特征波段建立的多元线性回归模型有了较大的提高,达到了实用水平。 相似文献
16.
基于光谱分析的草地叶绿素含量估测植被指数 总被引:2,自引:0,他引:2
对现有叶绿素遥感估测研究方法进行比较,确定植被指数法是其中最实用、普适性最强的研究方法。近年来,草地退化问题日益严峻,需要进一步从光谱分析、植物生化参数估测的角度加以研究,因而亟需建立一种用于反演草地植被叶绿素含量的植被指数。首先对四川省松潘草原和内蒙古自治区贡格尔草原的草地实测反射率光谱曲线及其一阶微分曲线进行分析,通过这两种光谱与叶绿素含量的相关性分析,找到红边区域(red-edge position, REP)与草地叶绿素含量之间的规律,即叶绿素含量越高,反射率一阶微分曲线的红边拐点(red-edge inflection point, REIP)取值越高,由此构建草地叶绿素含量估测植被指数(grassland chlorophyll index, GCI),选取最适宜反演的波段,最后采用卫星高光谱影像计算GCI,将计算结果与野外试验观测的叶绿素含量数据进行精度分析验证。结果证明,对于草地叶绿素含量来说,GCI比其他叶绿素指数的敏感性更强,具有较高的草地叶绿素含量估测精度。GCI是第一个针对草地叶绿素含量估测而被提出的植被指数,其对遥感反演草地叶绿素含量具有广泛应用潜力。同时这种基于光谱分析的草原植被叶绿素含量估测方法为其他的草原植被生化参数估测、草原植被生长状况评价以及草地生态环境变化大面积监测提供了新的研究思路。 相似文献
17.
18.
应用近地成像高光谱估算玉米叶绿素含量 总被引:7,自引:0,他引:7
图谱合一的近地成像高光谱是现代数字农业对田块尺度的作物长势信息进行动态临测和实时臀理的需要,是促进农业定量遥感发展的重要手段之一.文章通过自主研制的田间扫描成像光谱仪近地获得盆栽和大田玉米的冠层高光谱影像,从影像中精确提取玉米不同层位的叶片反射光谱并计算TCARI,OSA-VI,CARI,NDVI等多种光谱植被指数.构... 相似文献
19.
基于高光谱和BP神经网络的棉花冠层叶绿素含量联合估算 总被引:2,自引:0,他引:2
冠层叶绿素能够有效反映植被的生长状况。为了基于高光谱精确估算冠层的叶绿素含量,以棉花为研究对象,实测棉花冠层光谱反射率和叶绿素含量,然后进行原始光谱数据转换,计算高光谱参数,分析叶绿素含量与高光谱参数之间的相关关系,构建估算棉花冠层叶绿素含量的BP神经网络模型。结果表明:包络线去除处理后,冠层反射率和叶绿素含量的相关性在560~740 nm波段范围内提高了10.7%,效果优于原始光谱和一阶微分光谱得到的结果;基于原始光谱和去除包络线光谱建立的植被指数mSR、mND、NDI、DD与叶绿素含量表现出较高的相关性,相关系数均在0.8左右;在所建的BP神经网络模型中,基于包络线光谱指数建立的模型的决定系数为0.85,均方根误差和相对误差分别为1.37、1.97%,这一结果优于基于红边参数、原始光谱植被指数和一阶微分光谱指数建立的模型。本研究可为作物叶绿素含量估算的实际应用提供理论依据和技术支持。 相似文献
20.
准确及时地预测牧草的地上生物量AGB(above ground biomass)是实现牧草生长监测和合理放牧的前提。无人机高光谱遥感可快速获取高空间、光谱和辐射分辨率的遥感影像,已被广泛应用于精准农业和高通量植物表型等领域。为探究无人机高光谱影像(unmanned aerial vehicle hyper-spectral image, UAV-HSI)对草原牧草AGB预测的适用性,获取了青海省典型草场样区的UAV-HSI、样方牧草AGB和相关辅助数据。然而,UAV-HSI具有较大的数据量级,不便于被广泛采集、存储和传输,也会显著影响数据处理的效率,严重制约其被有效利用。着眼于此,提出一种兼顾数据简化和光谱保真的牧草冠层光谱重建优化方法,以期在有效降低数据量的同时,保证牧草AGB的预测精度。首先,利用残差量化方法对UAV-HSI进行特征参量化处理,获得低数据量级的多阶二值立方体(Hi)及系数矩阵(βi),并以此替代原始数据进行存储和传输;其次,利用Hi和βi进行光谱重建,得到初构光谱PRS(preliminarily reconstructed spectra);最后,运用Savitzky-Golay滤波对PRS进行优化,即为OPRS(optimized PRS)。以样区牧草光谱为例,对OPRS的光谱保真性,即OPRS与原始光谱之间的相关系数、光谱角和光谱矢量距离进行分析,结果表明,在3种保真性指标上,OPRS均明显优于同阶的PRS。进而,分析了牧草AGB与光谱变量之间的相关性,结果表明,与原始光谱和PRS相比,OPRS各波段对牧草AGB的预测能力相对较高且最为稳定。而后,利用偏最小二乘法回归构建了牧草AGB的反演模型,结果表明,在原始光谱、1~4阶PRS和1~4阶OPRS等9种光谱中,4阶和3阶OPRS的AGB预测精度分别达到了最优和次优水平,二者的AGB预测相对分析误差RPD(ratio of performance to deviation)分别为2.31和2.23,比原始光谱模型的RPD分别高0.26和0.18。在降低1个数量级的情况下,OPRS取得了优于原始光谱的牧草AGB预测性能,说明OPRS兼具数据简化和牧草AGB准确预测性能,为UAV-HSI估算牧草AGB提供了一种新的有效解决方案。 相似文献