首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
丙烯是一种重要的化工原料,近年来市场需求逐年上升.丙烷直接脱氢(PDH)生产丙烯技术虽然已实现工业化应用,但其存在反应热力学不利、催化剂成本高及使用有毒铬系催化剂等问题.丙烷氧化脱氢(ODH)由于过度氧化严重和存在操作风险等问题阻碍了其实际应用.化学链丙烷脱氢(CL-ODH)技术采用低成本且环境友好的可还原金属氧化物作为氧载体(氧化还原催化剂),并利用更高效的晶格氧作为氧化剂替代传统ODH过程中的氧气,在改善丙烷脱氢反应热力学限制的同时抑制了烷烃分子的过度氧化.氧化还原催化剂在该过程中发挥着重要的作用,其设计得到了研究者们的广泛关注.目前,铈锆储氧材料担载的钒催化剂由于在烷烃选择性氧化以及储氧能力方面的优势,在CL-ODH领域展示出良好的应用前景.然而,由于体相氧传输和表面反应共同决定氧化还原催化剂的性能,因此深入探究两者在反应过程中的作用机制对于高性能催化剂的开发至关重要.本文构建了结构明确的VOx-Ce1-xZrxO2氧化还原催化剂并应用于CL-ODH反应,通过引入Zr调控催化剂的表面和体相性质...  相似文献   

2.
针对柴油车排放进行了Pt整体式催化剂上NO催化反应的研究. 结果表明负载在Al2O3, TiO2和Al2O3-TiO2 3种载体上的Pt催化剂上同样存在着NO的催化还原和氧化反应. 与NO的氧化相比, 丙烯的氧化反应存在一定的竞争优势, 在丙烯基本完全氧化后才开始有NO2大量的生成. 与Pt/Al2O3相比, 将Pt负载在TiO2上表现出更高的催化活性. TiO2-Al2O3复合涂层结构结合了Al2O3大的比表面积和Pt担载在TiO2上高活性的特点, 进一步提高了Pt催化剂的反应活性.  相似文献   

3.
闫冰  陆文多  盛健  李文翠  丁鼎  陆安慧 《催化学报》2021,42(10):1782-1789
乙烯和丙烯等低碳烯烃是重要的基础有机化工产品,广泛应用于化工生产的各个领域.相比于其他工艺,低碳烷烃氧化脱氢制烯烃工艺具有不受热力学平衡限制、无积炭等特点而被广泛研究.近年发现六方氮化硼(h-BN)、硼化硅(SiB6)和磷酸硼(BPO4)等非金属硼基催化剂能够高效催化烷烃氧化脱氢反应,并抑制产物烯烃的过度氧化,表现出高的催化活性和烯烃选择性.大量的研究表明,硼基催化剂活性起源于催化剂表面的"BO"物种(如B-O和B-OH等基团).氧化硼(B2O3)作为一种氧化气氛中化学性质稳定的含硼化合物,兼具丰富的"BO"位点,在反应条件下可形成多种结构以适用不同的化学环境,为制备高效的烷烃氧化脱氢催化剂提供了可能.在之前的研究中,多将B2O3浸渍在常规的TiO2,SiO2,A12O3等三维多孔载体上用于氧化脱氢反应.考虑到B2O3结构的灵活性和易于成键特性,需开发更为有效的合成策略,以提升B2O3催化剂在氧化脱氢反应中的活性和稳定性.本文采用静电纺丝技术合成了直径为100~150 nm的多孔掺硼二氧化硅纳米纤维(PBSN)用于低碳烷烃氧化脱氢反应.静电纺丝法合成的催化剂中硼物种在开放的氧化硅纤维骨架上均匀分散且稳定固载.一维纳米纤维结构不仅有利于扩散,且赋予催化剂在高重时空速(WHSV)条件下优异的烷烃氧化脱氢反应活性.在乙烷氧化脱氢反应中,当乙烷的转化率达到44.3%时,乙烯的选择性和产率分别为84%和44.2 μmol gcat-1 s-1.而在丙烷脱氢反应中,当丙烷转化率为19.2%时,总烯烃选择性及丙烯产率分别为90%和76.6 μmol gcat-1 s-1.在温度为545 ℃,丙烷WHSV高达84.6 h-1的条件下,催化剂保持长时间稳定.与其他负载型氧化硼催化剂相比,PBSN催化剂具有更高的烯烃选择性和稳定性.研究表明,在氧化硅负载B2O3催化剂催化丙烷氧化脱氢反应中,载体中Si-OH基团的存在可能会降低丙烯的选择性.瞬态分析和动力学实验表明,硼基催化剂催化烷烃氧化脱氢反应过程中O2的活化受到烷烃的影响.本文不仅为高效硼基催化剂的合成提供了新思路,也为深入理解该类催化剂上烷烃氧化脱氢反应过程提供了实验支撑.  相似文献   

4.
乙烯和丙烯等低碳烯烃是重要的基础有机化工产品,广泛应用于化工生产的各个领域.相比于其他工艺,低碳烷烃氧化脱氢制烯烃工艺具有不受热力学平衡限制、无积炭等特点而被广泛研究.近年发现六方氮化硼(h-BN)、硼化硅(SiB_6)和磷酸硼(BPO_4)等非金属硼基催化剂能够高效催化烷烃氧化脱氢反应,并抑制产物烯烃的过度氧化,表现出高的催化活性和烯烃选择性.大量的研究表明,硼基催化剂活性起源于催化剂表面的"BO"物种(如B–O和B–OH等基团).氧化硼(B_2O_3)作为一种氧化气氛中化学性质稳定的含硼化合物,兼具丰富的"BO"位点,在反应条件下可形成多种结构以适用不同的化学环境,为制备高效的烷烃氧化脱氢催化剂提供了可能.在之前的研究中,多将B_2O_3浸渍在常规的TiO_2,SiO_2,Al_2O_3等三维多孔载体上用于氧化脱氢反应.考虑到B_2O_3结构的灵活性和易于成键特性,需开发更为有效的合成策略,以提升B_2O_3催化剂在氧化脱氢反应中的活性和稳定性.本文采用静电纺丝技术合成了直径为100~150 nm的多孔掺硼二氧化硅纳米纤维(PBSN)用于低碳烷烃氧化脱氢反应.静电纺丝法合成的催化剂中硼物种在开放的氧化硅纤维骨架上均匀分散且稳定固载.一维纳米纤维结构不仅有利于扩散,且赋予催化剂在高重时空速(WHSV)条件下优异的烷烃氧化脱氢反应活性.在乙烷氧化脱氢反应中,当乙烷的转化率达到44.3%时,乙烯的选择性和产率分别为84%和44.2μmol g_(cat)~(-1)s~(-1).而在丙烷脱氢反应中,当丙烷转化率为19.2%时,总烯烃选择性及丙烯产率分别为90%和76.6μmol g_(cat)~(-1)s~(-1).在温度为545℃,丙烷WHSV高达84.6 h~(-1)的条件下,催化剂保持长时间稳定.与其他负载型氧化硼催化剂相比,PBSN催化剂具有更高的烯烃选择性和稳定性.研究表明,在氧化硅负载B_2O_3催化剂催化丙烷氧化脱氢反应中,载体中Si–OH基团的存在可能会降低丙烯的选择性.瞬态分析和动力学实验表明,硼基催化剂催化烷烃氧化脱氢反应过程中O_2的活化受到烷烃的影响.本文不仅为高效硼基催化剂的合成提供了新思路,也为深入理解该类催化剂上烷烃氧化脱氢反应过程提供了实验支撑.  相似文献   

5.
丙烯是一种重要的化工原料, 其下游产品丰富, 用途广泛, 主要用于生产聚丙烯、丙烯腈、丙烯酸和丁醇等化工产品.丙烯的需求正在不断增长, 而传统的丙烯生产方法如蒸汽裂解和石油催化裂化, 存在反应温度高、积碳严重且丙烯收率较低等问题. 因此研制丙烷脱氢制取丙烯的高效催化剂尤为重要. 研究发现, 以 CO2作为温和氧化剂进行逆水气变换反应可有效促进丙烷脱氢. 催化剂主要由活性组分与载体构成, 本文选择可用于活化丙烷的钒作为主要活性组分. 钒氧化物在载体上的高度分散是提高丙烷脱氢反应活性的关键. MCM-41 拥有较大的比表面积和高度有序的介孔结构, 可更有效地分散活性位点. 本文采用一步法合成了不同钒含量的 nV-MCM-41 催化剂 (1.9-10.6 wt%), 并研究了其在以下条件下催化丙烷氧化脱氢制丙烯反应性能: 600 °C, 催化剂质量 0.2 g, 进料气体组成 C3H8/CO2/Ar (摩尔比) = 1/4/4, 进料气体总流量 15 mL/min. 其中 6.8V-MCM-41 催化剂具有最高的活性, 其初始丙烷转化率达 58%, 丙烯选择性达 92%, 远高于相似反应条件下早期研究的 nV-SBA-15 催化剂. 并在四次反应-再生循环中始终保持其原来的高反应活性. 本文借助于 N2吸附-脱附、拉曼光谱 (Raman)、X 射线光电子能谱 (XPS)和热重 (TG) 等手段探究了不同钒含量的 nV-MCM-41 催化剂在丙烷脱氢反应中催化性能差异的原因.氮气吸附-脱附结果表明, 所有催化剂都存在典型的高度有序的介孔结构, 并没有因为钒组分的掺杂而破坏. nV-MCM-41催化剂拥有较大比表面积,并随钒掺杂量的增加而减小. 其中,10.8V-MCM-41催化剂的比表面积急剧下降,可能是由于产生了结晶的 V2O5阻塞了孔道. Raman 结果表明, 当钒负载量超过 6.8 wt% 时, 出现了 V2O5的结晶峰. 另外根据单分散的四面体钒氧化物的特征峰面积发现, 6.8V-MCM-41 催化剂中钒物种分散度最高, 与其具有最高催化活性结果一致. XPS 结果也进一步证明 6.8V-MCM-41 钒物种的分散度最高. 在连续反应过程中 6.8V-MCM-41 催化剂失活较快,可归结于活性钒位点的还原与催化剂表面的积碳. 通过氧化再生, 可恢复催化剂活性, 并且在 4 次再生循环中始终保持其良好稳定的活性.  相似文献   

6.
丙烯作为一种重要的石油化工基础原料,传统上是从石脑油蒸汽裂解或催化裂化过程中作为副产物生产的.随着原油的枯竭和页岩气开发技术的成熟,通过乙烷蒸汽裂解制备乙烯更具吸引力并已得到广泛的工业应用,但该路线乙烯选择性高,而副产物丙烯数量有限.为满足不断增加的丙烯需求量,利用油田气和页岩气中低附加值的丙烷为原料,将其直接脱氢制丙烯(PDH)具有重要的现实意义.目前已开发成功的PDH技术采用的催化剂主要为负载PtSn型催化剂和Cr基催化剂.其中,Pt基催化剂较Cr基催化剂更加环境友好,因此得到了更广泛的应用.由于Pt元素的昂贵和稀有,制备低Pt含量和良好性能的催化剂极具吸引力.UOP Oleflex工艺开发的最新一代催化剂DEH-16仅含有0.3 wt%Pt,相对于前一代催化剂Pt含量降低30%.然而,许多文献报道,随着Pt含量的降低,催化剂的稳定性很容易恶化,降低Pt含量并保持催化剂性能仍具有一定的挑战.研究表明,含有更多Lewis酸性位点和更少Bronsted酸位点的催化剂显示出较好的丙烷脱氢活性和丙烯选择性.此外,源自缺陷位或配位不饱和位的Lewis酸性位也可为负载的金属颗粒提供锚定位点.BASF对ZrO2作为载体的丙烷脱氢催化剂进行了广泛研究,但其催化剂尚未完全商业化.有文献报道,ZrO2负载的PtSn催化剂在脱氢反应中的稳定性较差.将元素硼(B)加入到ZrO2中可以极大地抑制Bronsted酸性而提高Lewis酸量和酸强度,因此我们推测含有适量配位不饱和Zr位点的ZrO2作为PtSn丙烷脱氢催化剂载体可能具有优异的性能.载体的合成pH值对催化剂PDH性能也会有影响.然而,目前还没有硼改性的ZrO2(B-ZrO2)合成pH值对PDH催化性能影响的研究.本文研究了B-ZrO2的合成pH值(9,10和11)对PtSn/B-ZrO2在丙烷脱氢反应中催化性能的影响.Py-IR结果表明各pH值下合成的B-ZrO2均只有Lewis酸,NH3-TPD结果则表明B-ZrO2的Lewis酸量和强度随合成pH值的增加而增加.XPS结果显示,载体对Pt和Sn电子性质的影响不容忽视.由于OSC与CO氧化活性之间没有线性关系,因此Pt和Sn之间的相互作用程度在CO氧化反应中可能起主要作用,并有如下递增趋势:PtSn/B-ZrO2-9相似文献   

7.
苯乙烯(SM)是聚合物化学中最重要的单体之一,由其生产的聚合物产品(如PS,SBR和ABS等)具有独特的性能,因而SM的需求逐年增加.乙苯(EB)催化脱氢工艺提供了90%的SM需求,该过程在K促进的氧化铁催化剂上于600-650℃进行.这是一个吸热且体积增大的反应,因此需要绝热反应器和大量的过热过饱和蒸汽以提供热量和降低反应分压,从而有利于反应平衡向SM方向移动,也可避免或消除积碳.同时,也造成大量潜热被浪费;热点也降低了整个反应活性和催化剂寿命.在蒸汽中加入空气或富氧空气,使得副产H2与O2反应,产生的热量可供随后乙苯脱氢反应,同时H2的移除也有利于提高EB单程转化率,并保持高的SM选择性.但是,该过程需要2个催化剂,反应器的设计和催化剂的装填比较复杂,且存在爆炸的危险.因此,人们尝试了多种氧化剂和新型的催化剂.最近也有人提出软氧化剂的概念.这为开发新催化体系提供了可能.相对于O2,CO2的氧化性很弱,但可用作温和氧化剂去除脱氢单元中副产的H2,降低了反应温度,且不影响反应活性和选择性;同时,具有较大的经济性和环保性,在工业上也是切实可行的.除了负载型的碱金属促进的氧化铁催化剂外,各种金属或金属氧化物也用于催化CO2氧化EB脱氢反应中,如Fe,Cr,V和La的氧化物为活性金属,碳材料、MgO、SiO2、Al2O3、Ga2O3、ZrO2、TiO2、水滑石类化合物及分子筛为载体.Park课题组研究了Fe,V和Cr基催化剂,即设计氧化还原的催化剂表面以解离CO2,产生的O用于逆水汽反应.其中以Al2O3负载的V和V-Sb氧化物催化剂性能最为突出;但存在积碳失活和V物种的深度还原等问题.为了进一步提高催化剂性能,该课题组开发了多种ZrO2基复合氧化物催化剂,包括MnO2-ZrO2,TiO2-ZrO2,CeO2-ZrO2和SnO2-ZrO2.这些催化剂具有酸碱特性,在反应中表现出较高的催化性能.因此,本文简要总结了用于CO2氧化EB脱氢反应的ZrO2基催化剂最新研究进展.研究发现,在CO2氧化EB脱氢制SM反应中,CO2在提高催化剂活性和稳定性方面起着非常重要的作用,可被定义为软氧化剂:氧化催化剂表面以保持其表面氧含量,移除催化剂表面产生的积碳和副产物H2,为反应体系提供较高的热容以克服反应平衡限制,从而达到较高的转化率.ZrO2基复合金属氧化物是具有改善的织构特性的纳米粒子,且具有酸碱两性和氧化还原性能.改性可提高催化体系的热稳定性和活性.其中CeO2-V2O5/TiO2-ZrO2催化剂具有恰当的氧化还原性和酸碱两性,二者协同作用,因而催化性能最佳.氧化还原稳定剂Sb的添加进一步提高了其催化性能.碱金属和碱土金属可优化其酸碱性,增加比表面积,从而提高反应活性和选择性以及CO2转化率.继续加强抑制积碳和促进CO2活化方面的研究,可有望进一步提高单程转化率(75%以上)、选择性(98%)和CO2转化率(30%).总之,CO2氧化EB脱氢制SM是一个高度经济性和环境友好的新过程,在未来有望满足SM日益增长的需求.另外,该过程的开发可减少CO2排放,其副产的CO还可用于多种化工过程.然而,该过程仍面临诸多挑战:如何抑制积碳,单程转化率和催化剂寿命有待进一步提高.这些挑战也给我们未来的研究提供了方向.深入理解反应机理、积碳机理和CO2的活化过程也有利于我们开发出更适合工业应用的催化剂.  相似文献   

8.
丙烯是一种基础石油化工原料,在全球石油化工生产中占有重要地位.以丙烯为原料可生产许多石油化学品,如丙烯腈、环氧丙烷和聚丙烯等.经济快速发展带动了丙烯下游衍生物产业的发展,进而增加了对丙烯的需求量,因此尽管近年来丙烯产能逐年上升,丙烯产量与需求量之间仍存在较大缺口.传统的丙烯生产路径主要是石脑油蒸汽裂解和重质油催化裂化.然而,随着石油资源的短缺和页岩气的发展,丙烷脱氢作为一种直接生产丙烯的技术,成为丙烯生产领域的研究热点.近年来,镓基催化剂由于其较少的积碳和较高的催化活性受到了越来越多的关注.镓基催化剂在丙烷脱氢反应中的活性位点也得到了更多研究.在镓基催化剂中,镓氧化物具有丙烷脱氢活性,而丙烷脱氢反应过程中产生的镓氢(Gaδ+-Hx)物种不稳定,且会造成丙烯选择性降低,导致丙烯产率降低.因此,反应过程中原位消除镓氢物种对于提高丙烷脱氢反应性能具有非常重要的意义.本文将CO2作为温和氧化剂引入Ga2O3/SiO2催化的丙烷脱氢反应中,促进不利的中间产物Gaδ+-Hx的转化,再生丙烷脱氢的活性位点Ga3+-O,从而提高催化性能.原位红外光谱实验结果表明,CO2可有效消除Gaδ+-Hx.在不同反应温度下,引入CO2可显著提高Ga2O3/SiO2催化丙烷脱氢的转化率,特别是选择性.反应4.5 h时,3Ga2O3/SiO2催化丙烷脱氢的选择性从93%降低到89%;引入CO2后,丙烯选择性可提高到并维持在93%.Ga2O3负载量由3 wt%提高到10 wt%时,引入CO2仍可促进反应性能.当CO2:C3H8由0.5增加到3时,引入CO2带来的反应性能提升基本相同.同时,引入CO2大大减少反应过程中产生的积碳.本文对镓基催化剂丙烷脱氢活性中心的认识和提高丙烷脱氢反应性能提供了新方向.  相似文献   

9.
正丁烷在金属钼酸盐催化剂上的氧化脱氢   总被引:5,自引:0,他引:5  
 用柠檬酸盐法合成了第一系列过渡金属(Cr,Mn,Fe,Co,Ni,Cu和Zn)及Mg的钼酸盐催化剂,研究 了它们对正丁烷氧化脱氢反应的催化作用. 结果表明,这些钼酸盐催化剂的催化性能受阳离子的影响较大. CoMoO4催化剂具有最高的催化活性和较高的选择性,其催化性能与文献报道的对正丁烷氧化脱氢反应催化性能最好的ZrP2O7和Mg3V2O8催化剂大致相当; MgMoO4催化剂虽然选择性较高,但活性较低; Cr2(MoO4)3上基本没有C4烯烃生成; 其它钼酸盐催化剂对正丁烷氧化脱氢反应的催化活性和对烯烃的选择性都较低. XRD,NH3-TPD和H2-TPR的研究结果表明,催化剂为单一的钼酸盐晶相,催化剂的性能由其氧化还原性决定而与其表面酸量没有直接关系. 通过对产物分布的分析,提出了正丁烷在CoMoO4催化剂上的氧化脱氢反应途径. 在558 ℃,正丁烷发生氧化脱氢生成正丁烯和丁二烯以及氧化燃烧生成CO2三个平行竞争反应的竞争分率分别约为75%,10%和15%. 在正丁烷转化率较高的条件下,产物中的CO2主要来自C4烯烃的再氧化反应,而CO则完全来自C4烯烃的再氧化.  相似文献   

10.
以水滑石为载体,采用离子交换法制备了Pt-Sn_E/Mg(Al)O催化剂,并对其进行了X射线衍射、N2物理吸附、透射电镜等技术表征;考察了该离子交换法制备的Pt-SnE/Mg(Al)O催化剂对乙烷和丙烷脱氢的催化性能,并与浸渍法制备的Pt-SnI/Mg(Al)O催化剂进行了比较。结果表明,利用离子交换法制备的Pt-SnE/Mg(Al)O催化剂其反应活性和稳定性明显优于浸渍法制备Pt-SnI/Mg(Al)O催化剂的。在相同条件下反应2 h后,Pt-SnE/Mg(Al)O催化剂和Pt-SnI/Mg(Al)O催化剂的乙烷催化脱氢转化率分别为12.2%和3.1%,丙烷催化脱氢转化率分别为38.7%和26.4%。  相似文献   

11.
用微型催化反应装置评价, 并结合X射线粉末衍射(XRD)、表面积和孔结构测试、程序升温还原(TPR)、氢化学吸附和热重分析等方法研究了负载型PtSn/γ-Al2O3, PtSn/MCM-41和PtSn/Al2O3/MCM-41催化剂的丙烷脱氢反应催化性能. 发现PtSn/Al2O3/MCM-41催化剂具有较PtSn/MCM-41催化剂高的丙烷脱氢反应活性和较PtSn/γ-Al2O3催化剂高的反应稳定性. 实验结果表明, 纯硅MCM-41载体表面的锡物种因与载体相互作用较弱故易被还原, 导致铂金属分散度和催化剂的丙烷脱氢活性较低. 用Al2O3修饰MCM-41可以增强Sn物种与Al2O3/MCM-41载体之间的相互作用, 提高PtSn/Al2O3/MCM-41催化剂铂金属分散度和丙烷脱氢催化活性. 并且, 积炭后的PtSn/Al2O3/MCM-41催化剂具有较高的铂金属表面裸露度, 故具有较高的丙烷脱氢反应稳定性. PtSn/Al2O3/MCM-41催化剂优良的丙烷脱氢催化性能可能不仅与Sn-载体Al2O3/MCM-41较强的相互作用有关, 而且与Al2O3/MCM-41载体的介孔结构有关.  相似文献   

12.
丙烯是一种重要的化工原料,其下游产品丰富,用途广泛,主要用于生产聚丙烯、丙烯腈、丙烯酸和丁醇等化工产品.丙烯的需求正在不断增长,而传统的丙烯生产方法如蒸汽裂解和石油催化裂化,存在反应温度高、积碳严重且丙烯收率较低等问题.因此研制丙烷脱氢制取丙烯的高效催化剂尤为重要.研究发现,以CO_2作为温和氧化剂进行逆水气变换反应可有效促进丙烷脱氢.催化剂主要由活性组分与载体构成,本文选择可用于活化丙烷的钒作为主要活性组分.钒氧化物在载体上的高度分散是提高丙烷脱氢反应活性的关键.MCM-41拥有较大的比表面积和高度有序的介孔结构,可更有效地分散活性位点.本文采用一步法合成了不同钒含量的nV-MCM-41催化剂(1.9-10.6 wt%),并研究了其在以下条件下催化丙烷氧化脱氢制丙烯反应性能:600°C,催化剂质量0.2 g,进料气体组成C_3H_8/CO_2/Ar(摩尔比)=1/4/4,进料气体总流量15mL/min.其中6.8V-MCM-41催化剂具有最高的活性,其初始丙烷转化率达58%,丙烯选择性达92%,远高于相似反应条件下早期研究的nV-SBA-15催化剂.并在四次反应-再生循环中始终保持其原来的高反应活性.本文借助于N_2吸附-脱附、拉曼光谱(Raman)、X射线光电子能谱(XPS)和热重(TG)等手段探究了不同钒含量的nV-MCM-41催化剂在丙烷脱氢反应中催化性能差异的原因.氮气吸附-脱附结果表明,所有催化剂都存在典型的高度有序的介孔结构,并没有因为钒组分的掺杂而破坏.nV-MCM-41催化剂拥有较大比表面积,并随钒掺杂量的增加而减小.其中,10.8V-MCM-41催化剂的比表面积急剧下降,可能是由于产生了结晶的V_2O_5阻塞了孔道.Raman结果表明,当钒负载量超过6.8 wt%时,出现了V_2O_5的结晶峰.另外根据单分散的四面体钒氧化物的特征峰面积发现,6.8V-MCM-41催化剂中钒物种分散度最高,与其具有最高催化活性结果一致.XPS结果也进一步证明6.8V-MCM-41钒物种的分散度最高.在连续反应过程中6.8V-MCM-41催化剂失活较快,可归结于活性钒位点的还原与催化剂表面的积碳.通过氧化再生,可恢复催化剂活性,并且在4次再生循环中始终保持其良好稳定的活性.  相似文献   

13.
低碳烯烃是化学工业的重要原料,通过脱氢反应将低碳烷烃转化为同碳数的烯烃是烷烃高值化利用和烯烃原料多元化的重要途径.烷烃氧化脱氢制烯烃的反应具有不受反应平衡限制、无积炭、反应温度低等优点,一直是研究的热点.传统的金属氧化物具有较好的催化剂活性,但容易造成烯烃的过度氧化而导致烯烃选择性低.硼基催化剂作为一种新型非金属催化剂,表现出显著不同于金属氧化物催化剂的反应特性.六方氮化硼(hBN)被首次报道在丙烷氧化脱氢反应展现高活性,随后系列硼化物(SiB_6、CB_4等)以及负载型硼基催化剂相续被报道.硼催化剂显现出高的催化活性和优异的烯烃选择性,产物中几乎没有完全氧化产物CO2生成,这为选择性断裂C-H键开辟了新路径.大量的谱学以及动力学研究表明催化剂表面BOx物种为催化剂的活性位点.这种打破传统认知的非金属催化剂的催化作用在国际上已经形成一个新的研究热点.此外,非金属炭基催化剂在烷烃氧化脱氢反应中也表现出一定的活性,碳纳米管、碳纳米纤维以及纳米金刚石等炭基催化剂均被用于氧化脱氢反应.炭基催化剂中的羰/醌基被认为是催化活性位;催化剂表面的羧酸、酸酐、内酯等官能团易引起选择性的下降,通过杂原子(B、P、N)掺杂可调变催化剂表面的亲电氧物种,改善烯烃的选择性.本文主要综述了近年来非金属催化低碳烷烃氧化脱氢所涉及的催化剂体系、反应机理等研究进展,最后展望了不同催化剂体系应用于烷烃氧化脱氢反应的未来发展.  相似文献   

14.
用微型催化反应装置评价,并结合X射线粉末衍射(XRD)、表面积和孔结构测试、程序升温还原(TPR)、氢化学吸附和热重分析等方法研究了负载型PtSn/γ-Al2O3,PtSn/MCM-41和PtSn/Al2O3/MCM-41催化剂的丙烷脱氢反应催化性能.发现PtSn/Al2O3/MCM-41催化剂具有较PtSn/MCM-41催化剂高的丙烷脱氢反应活性和较PtSn/γ-Al2O3催化剂高的反应稳定性.实验结果表明,纯硅MCM-41载体表面的锡物种因与载体相互作用较弱故易被还原,导致铂金属分散度和催化剂的丙烷脱氢活性较低.用Al2O3修饰MCM-41可以增强Sn物种与Al2O3/MCM-41载体之间的相互作用,提高PtSn/Al2O3/MCM-41催化剂铂金属分散度和丙烷脱氢催化活性.并且,积炭后的PtSn/Al2O3/MCM-41催化剂具有较高的铂金属表面裸露度,故具有较高的丙烷脱氢反应稳定性.PtSn/Al2O3/MCM-41催化剂优良的丙烷脱氢催化性能町能不仅与Sn-载体Al2O3/MCM-41较强的相互作用有关,而且与Al2O3/MCM-41载体的介孔结构有关.  相似文献   

15.
张涛 《物理化学学报》2022,38(8):2012009-13
<正>丙烯是化工行业重要的基础原料之一。在众多生产丙烯的工艺中,丙烷无氧脱氢(PDH)以丙烯选择性高、技术成熟度高、投资成本低的特点,成为目前最具竞争力的丙烯生产工艺1,2。但商业化的Pt基和Cr基催化剂因其成本高昂、环境污染和丙烷转化率受热力学平衡限制等因素而影响了其应用和发展3,4。因此,开发新型、可替代的脱氢工艺及与之配套的催化剂体系具有重要的科学研究和工业应用价值。  相似文献   

16.
采用溶剂法合成了热稳定性高的金属有机骨架材料MIL-53(Al)(MIL:Materials of Institut Lavoisier),用此材料为载体负载钴催化剂用于CO的催化氧化反应,并与Al2O3负载的钴催化剂进行了对比.采用热重-差热扫描量热(TG-DSC)、傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、N2物理吸附-脱附、透射电子显微镜(TEM)、氢气程序升温还原(H2-TPR)等方法对催化剂的结构性质进行了表征.TG和N2物理吸附-脱附结果表明,载体MIL-53(Al)有好的稳定性和高的比表面积;XRD以及TEM结果表明Co/MIL-53(Al)上负载的Co3O4颗粒粒径(平均约为5.03 nm)明显小于Al2O3上Co3O4颗粒粒径(平均约为7.83 nm).MIL-53(Al)的三维多孔结构中分布均匀的位点能很好地分散固定Co3O4颗粒,高度分散的Co3O4颗粒有利于CO的催化氧化反应.H2-TPR实验发现Co/MIL(Al)催化剂的还原温度低于Co/Al2O3催化剂的还原温度,低的还原温度表现为高的催化氧化活性.CO催化氧化结果表明,MIL-53(Al)负载钴催化剂的催化活性明显高于Al2O3负载钴催化剂,MIL-53(Al)负载钴催化剂在160°C时使CO氧化的转化率达到98%,到180°C时CO则完全转化,催化剂的结构在催化反应过程中保持稳定.  相似文献   

17.
采用溶胶凝胶法制备Cr/Al2O3,Nd-Cr/Al2O3催化剂,通过X射线衍射(XRD)、N2吸附脱附和透射电子显微镜(TEM)对催化剂进行表征,结果表明稀土的加入增加了负载过渡金属的氧化铝的比表面积,使孔道结构更加规则有序。程序升温脱附(TPD)、程序升温还原(TPR)、X射线光电子能谱(XPS)和27Al固体核磁共振(27Al MAS NMR)的表征进一步说明稀土金属和过渡金属对载体表面性质和Al配位的影响,在催化反应中铬是主催化剂,钕是助催化剂。将催化剂用于苯一步氧化制备苯酚的反应中,反应结果表明所得催化剂均具有较高活性,并且Nd-Cr/Al2O3的催化活性高于Cr/Al2O3。  相似文献   

18.
 丙烷氧化脱氢反应制备丙稀酸,丙烯醛,由于其巨大的工业价值而成为催化领域研究的热点。该反应也可分为两步实现。即先由丙烷到丙烯,再由丙烯到丙稀酸,丙烯醛。后一步已成功的实现工业化,在低温下( £350℃),使用钒基催化剂,丙稀酸,丙烯醛的产率可高达80%以上。但是,对于前一步,使用迄今为止最有效的V-Mg-O催化剂,在550℃的高温下,丙烯的产率仅为20%。而在如此高的温度下,在紧接着的第二步反应中,大部分的丙烯会直接转化为深度氧化产物(CO2, H2O)。所以,制备一种能在低温下有效实现丙烷氧化脱氢反应制丙烯的催化剂是由丙烷制备高产率的丙稀酸,丙烯醛的另一种途径。\r\n 催化剂V2O5/TiO2最显著的特点是它具有较高的低温催化活性。但是,作为载体材料,TiO2有一些缺点,如比表面较小,热稳定性较差,机械性能较低,抗磨损性较差等。相比之下,载体ZrO2就具有许多TiO2所不具备的优点。第一,ZrO2具有很大的比表面积(>300m2/g),并且在高温下它也能保持较高的比表面积。第二,ZrO2的热稳定性,机械性能和抗磨损性都较好。第三,金属氧化物在ZrO2表面能够得到很好的分散。第四,ZrO2非常稳定,在烷烃氧化脱氢反应的条件下是惰性的,不参加反应。所以,如果向TiO2中掺杂ZrO2进行改性,能极大的提高其载体的表面积,热稳定性,机械性能和抗磨损性。那么复合载体TiO2-ZrO2很可能成为在低温下丙烷氧化脱氢制丙烯的极有潜力的催化剂载体材料。在本文中,我们采用溶胶-凝胶法,用廉价的无机盐作为初始材料制备了一系列不同TiO2/ZrO2质量比的TiO2-ZrO2复合氧化物作为催化剂载体并研究了这些催化剂用于丙烷氧化脱氢反应的催化活性。  相似文献   

19.
CO2气氛下负载型Cr2O3催化剂上乙苯脱氢制苯乙烯反应   总被引:2,自引:0,他引:2  
 采用浸渍法制备了负载型Cr2O3/Al2O3和Cr2O3/SiO2催化剂,并考察了催化剂在CO2气氛下催化乙苯脱氢制苯乙烯反应的活性. 结果表明,Cr2O3/Al2O3的催化活性高于Cr2O3/SiO2. 这可能是由于Cr2O3在Al2O3载体表面的分散度大大高于在SiO2表面的分散度. 催化剂的催化活性与Cr2O3的负载量有关,在w(Cr2O3)=25%时,Cr2O3/Al2O3的催化活性最高. CO2气氛对乙苯脱氢反应有明显的促进作用; 在CO2气氛下,Cr6+物种可能是催化乙苯脱氢反应活性位的前驱体.  相似文献   

20.
异丁烯用途广泛,被认为是除乙烯和丙烯外最重要的基础化工原料.异丁烯的来源主要是石油裂化过程中产生的碳四馏分,但随着对其需求量的逐年增加,分离法已逐渐无法满足,因此异丁烷直接脱氢工艺逐渐受到工业界和学术界的重视.铬系和铂系催化剂是两类传统工业催化体系,但铬对环境污染严重,铂作为贵金属成本较高,而且现有工艺大多存在催化剂稳定性较差需要反复再生的问题.近年来碳材料用于烷烃氧化脱氢反应的研究较多,并表现出较高的活性和稳定性,甚至有研究组提出金属催化剂在反应中快速生成的活性积碳(active coke)可能是真正的催化活性中心.但氧化脱氢反应不同于直接脱氢,需在反应中加入氧气,这在实际生产中会带来一系列问题:考虑到烷烃的爆炸极限,实际应用时反应气必须稀释,这不利于产物的收集;而且氧气会导致反应物过度氧化产生CO和CO2等副产物,也限制了氧化脱氢工艺在工业上的应用和发展.
  我们研究组将椰壳碳、煤质碳和碳纳米管等碳材料作为催化剂用于催化异丁烷直接脱氢反应,发现碳催化剂表现出较高的催化活性:在625 oC,椰壳碳上异丁烷转化率和异丁烯选择性分别为70%和78%,连续反应3d后仍能维持34%的转化率,且选择性基本不变.与铬基催化剂相比,碳催化剂在稳定性方面表现出更大优势.我们进一步采用N2吸脱附、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)和场发射扫描电子显微镜(FE-SEM)等手段对反应前后的碳催化剂进行了详细表征. N2吸脱附结果表明,椰壳碳比表面积高达1190.2 m2/g,这可能是其具有较高催化活性的原因;而结合催化剂活性数据,对比反应前后椰壳碳催化剂比表面积和异丁烷转化率可知,两者呈现近乎线性的相关性,进一步证实比表面积大小对碳催化剂催化活性有重要影响. XPS谱图证明椰壳碳在反应前表面除了有少量硅(0.73%)外,不存在金属氧化物等杂质,证实碳材料无需负载氧化物等即可表现出较高的催化活性;反应后沉积的积碳附着在催化剂表面,使硅含量降低至0.47%;催化剂中氧含量也由4.43%降低至3.78%,同时有碳酸盐生成. FTIR谱图进一步证实反应前的椰壳碳表面有丰富的有机官能团,但反应开始后有机官能团很快消失,而催化剂仍保持较高的催化活性,因此有机官能团并非碳催化剂催化活性高的必要因素,这与文献中已报道的结果不同. FE-SEM照片中观察到反应后椰壳碳催化剂表面形成积碳,随着反应时间延长积碳明显增多,这与XPS结果一致.
  碳材料具有来源广泛、绿色环保等显著优势,可作为一种新的催化体系应用于异丁烷直接脱氢反应,无需负载其他物质或添加氧化性气体即可表现出良好的催化活性和稳定性,其比表面积对催化活性有重要影响,反应中产生的积碳导致催化剂比表面积下降进而降低其催化活性,而有机官能团的存在对催化活性影响不大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号