首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
本文介绍了爆炸减压板的减压性能和减压功能对比试验,指出爆炸减压板是防止建筑物在可燃气体泄放爆炸中破坏的重要措施。  相似文献   

2.

氢气是一种零排放的二次能源,是实现“双碳”目标的重要能源之一。采用在役天然气管道或管网输送掺氢天然气,是实现氢气大规模输送的有效方式。精确控制进入输送系统的掺氢比例对系统安全运行具有重要意义。本文介绍了电气式和机械式随动掺氢系统的结构与原理;分析了红外吸收型、热传导型、半导体型浓度传感器和相应的综合测量系统在掺氢比动态调整中的应用;重点评述了目前3个重要在役天然气掺氢示范项目中随动掺氢系统的组成和运行结果;基于工程实践经验展望了天然气掺氢技术的发展趋势。

  相似文献   

3.

氢能是最有潜力的碳中和清洁能源载体,天然气掺氢在管道输运和终端应用方面具有优势。本文调研了国际上具有代表性的天然气掺氢研究及示范项目,分析了天然气掺氢管道输运和终端应用的可行性和经济性。研究结果表明:低比例的氢气(20%体积比以内)加入天然气管网系统中并不会明显增加相关事故风险及危害,对系统进行轻微改造的情况下最高可以允许50%体积比氢气加入天然气管网系统。通过经济性分析核算了天然气掺氢的成本,给电厂进行天然气掺氢提供参考。鉴于各个国家在天然气成分、管道条件和管道材料上的不同,我国应根据实际的管路、气体具体情况开展对于天然气掺氢的分析研究。

  相似文献   

4.

氢气掺混少量烃类气体有助于降低氢气储运和应用中燃爆风险。本文采用定容燃烧弹研究了甲烷掺混对氢气可燃极限和燃爆特性的影响规律,并对宽广当量比下富氢/甲烷/空气预混气以及纯氢气在空气中的燃烧爆炸特性开展对比研究。结果表明,随着甲烷添加量增加,可燃范围呈指数式降低,仅添加10%甲烷就能够使浓燃极限下降22.9%。但添加10%甲烷后,层流燃烧速度降低,化学计量比下爆炸时间增长20倍,热损失增大,导致最大爆炸压力略有降低,最大压力升高率显著降低。结合火焰发展的纹影图片分析可知,添加甲烷能够减弱可燃气燃爆危险性,不仅受层流燃烧速度降低的影响,还与火焰面裂纹和细胞状结构的减弱有关。

  相似文献   

5.
由于天然气与氢气的物性差异,氢气掺入天然气管网后会改变管线内气体物性条件,掺混均匀程度以及掺氢比均会对管道、设备的性能带来不同程度的影响。储罐是输气管线中最常见的组件,本文以储罐为基础提出了单管分级掺氢、多管多汇单次掺氢两种掺氢方案,并采用FLUENT软件建立储罐模型进行动态掺混仿真,结果表明单管分级掺混方案相较于多管多汇单次掺混方案能取得更好的掺混效果。为了探究不同掺氢比气体通过单管单汇方案储罐和以上两种掺氢方案对管道运行的影响,本文采用HYSYS软件分别建立对应工艺流程模型进行工艺模拟,结果表明,三种方案的储罐内压力排序为:多管多汇单次掺氢>单管单汇储罐>单管分级掺氢;此外,随掺氢比增加,管道压力和温度增大,而压降、温降减小。总体而言,本文提出的基于储罐的掺氢方案具有结构简单、加工方便、成本低、掺混效果和掺氢比适应性相对较好等优点,此外不同掺氢比下HYSYS工艺模拟结果对于掺氢管线的运行分析也有参考意义。  相似文献   

6.
为进一步揭示金属丝网阻抑掺氢甲烷燃烧火焰传播特征的规律,通过实验研究了掺氢比例对不同孔隙密度金属丝网阻火过程的影响。结果表明:随着掺氢比例的增加,金属丝网的阻火难度加大,金属丝网的阻火效果可由成功转为失败,对火焰传播的影响作用可能从抑制转变为促进;当金属丝网阻火失败时,金属丝网会引起火焰褶皱并导致火焰加速,但郁金香形火焰的首现时间有所延迟;随着掺氢比例的增大,火焰穿过金属丝网后的加速现象更为明显;提高金属丝网孔隙密度可提高金属丝网对掺氢甲烷预混火焰的阻火能力,孔隙密度越大,阻火能力越强;60 mpi以上金属丝网能够有效淬熄掺氢甲烷预混火焰。  相似文献   

7.

利用天然气管输系统混输氢气,能实现氢气大规模、低成本、长距离输送,但掺氢混输带来更严峻的安全、技术挑战。本文围绕输送工艺及关键设备、管材相容性与寿命预测、泄漏监测检与风险评估、标准体系建设几项关键技术,探讨掺氢天然气长距离管道输送的安全问题。建议统筹规划输送网络,改进关键管输工艺与设备,建立输运协同应急与智慧决策大数据平台,制定掺氢天然气管道输送规范标准,逐步开展掺氢天然气输送技术应用示范。

  相似文献   

8.
采用改进的Hartmann管作为测试主体测试了室温常压下含CO2天然气的可燃极限和燃爆压力, 得到了含CO2天然气在三角坐标系下的可燃性图表和燃爆压力的变化规律。研究表明:与纯天然气相比,含 CO2天然气可燃范围缩小,燃爆威力降低;当泄漏天然气与air的混合物中CO2的体积分数超过13.86%时, 混合气体将失去燃爆性;处于燃爆范围的CH4/air/CO23组分混合气体,燃爆压力随CO2与CH4体积分数比 的增大而减小。  相似文献   

9.
设计了一套可燃液体爆炸特性实验装置,利用该装置和立式爆轰管对RP-5油料、RP-3油料及工业酒精的爆炸特性、1301惰性气体对这3种燃料的抑制进行了研究。结果表明:RP-5油料、RP-3油料及工业酒精爆炸的体积分数范围分别为1.53%~7.73%、0.82%~7.17%及 3.38%~18.25%;酒精云雾爆轰的临界起爆能为2.11 MJ/m2、爆速和爆压分别为1 609 m/s 、1 480 kPa,爆轰波传播的胞格宽度为14.5 mm,长度为16.2 mm。1301惰性气体对RP-5油料、RP-3油料及工业酒精的最小惰化体积分数分别为6.75%、6.8%及 5.56%;二氧化碳和氮气对RP-3油料的最小惰化体积分数分别为45%和49%;1301惰性气体对油料爆炸抑制效果明显好于二氧化碳与氮气。  相似文献   

10.
利用自主设计的5.00 m长矩形管道,对氢气体积分数为30%的氢气-空气预混气体进行了不同破膜压力(pv)下的系列燃爆实验,重点研究了pv对管道内外火焰传播行为及爆炸超压的影响。实验结果表明:管道内的火焰传播行为受pv影响显著。在靠近泄爆口的压力传感器所监测的压力-时间曲线上,可以观察到3个压力峰值(pb、pout、pext),分别对应于铝膜破裂、燃烧混合物泄放以及外部爆炸,大多数情况下,pb为最大压力峰值。管道内部最大超压随着pv升高而增大,但最大内部超压出现的位置受pv的影响。管道外部火焰传播行为与pv有关,但不同pv下外部火焰的最大长度无明显差异。最大外部超压与pv之间呈现非单调变化规律。  相似文献   

11.
城市地下浅埋管沟燃气爆炸事故会造成严重的灾害后果,然而目前针对长直空间内的爆炸荷载通过泄爆口向外传播规律的研究较少。以此类事故为基础,基于前期进行的长直泄爆空间可燃气体爆炸试验,利用FLACS软件,对城市地下浅埋管沟内可燃气体爆炸冲击波超压通过泄爆口到达地面后的分布进行了数值模拟,揭示了管沟内燃气爆炸冲击波在地面的传播规律。结果表明:传播到地面的爆炸冲击波会产生2个特征超压峰值Δp1和Δp2;Δp1较小,主要由压缩波引起,Δp2为最大超压峰值,主要由火焰波引起;Δp2随着与泄爆口之间的距离d的增大而逐渐减小,且各方向上数值的差异性较大,其中在沿管沟截面的短边方向上,呈对称衰减的趋势;Δp2与d大致满足指数函数关系,且拟合度均高于98.8%。  相似文献   

12.
为研究无约束条件下甲烷(CH4)/空气(air)预混气体的燃爆特性,以乳胶气球为反应容器开展了甲烷爆炸实验,结合Chemkin模拟和改进的比色测温技术,研究了不同当量比下甲烷/空气预混气体的火焰传播速度、爆炸超压及温度场分布等特征以及静置时间对预混气体燃爆特性的影响。实验结果表明:甲烷/空气预混气体的爆炸火焰传播速度呈振荡分布,当量比为0.83、1.06、1.30和1.55时的平均火焰传播速度分别为1.554m·s-1、2.122m·s-1、1.892m·s-1和1.428m·s-1;峰值超压随当量比的增加呈先增大后减小的趋势,当量比为1.06时基元反应CH3·+O2?O·+CH3O·的敏感性系数最大,从而加速了生成二氧化碳(CO2)的链反应,使得燃烧化学反应最彻底,峰值超压值最大;静置时间对火焰传播速度和爆炸峰值压力影响显著,最佳静置时间为6min;随着当量比的增大,爆炸火焰的平均温度呈现...  相似文献   

13.
天然气掺氢是解决氢气产地与使用地不匹配,进而实现氢气大规模、远距离输送的主要方法。由于氢气的存在会导致在役天然气管道出现氢脆引起安全事故。所以,研究天然气掺氢管路中氢气组分、速度、聚集的规律分析十分必要。本文选用天然气和氢气两种工质,构建T型掺混管路模型和变径管路模型;并基于Fluent软件对T型掺混管路和10种变径掺混管路进行数值模拟研究。结果表明,对于T型掺混管路,在管长是管径35倍处内依然有明显分层,宽度占据1/3管径。对于变径掺混管路,发现变径越靠近掺混中心、直径越窄、高度越低越容易发生氢气富集,氢气摩尔分数最高达到50%~60%,易引起管道的氢脆。研究结果可对天然气掺氢在管道中流动的氢浓度分布和管道变径选取提供参考。  相似文献   

14.
倪靖  潘剑锋  姜超  陈祥  张顺 《爆炸与冲击》2020,40(4):042102-1-042102-9

含氢多组分燃料由于其优良的燃烧特性逐渐成为研究关注的重点。为了对掺氢燃料的爆轰特性作进一步的研究,设计了长3 000 mm、管径30 mm的圆柱形半封闭燃烧室,对不同初压下的CH4-2O2、6CH4-H2-12.5O2、3CH4-H2-6.5O2(掺氢比分别为0%、5.1%、9.5%)3种预混合气的爆轰特性进行了实验研究,并采用烟熏膜、离子探针和压力传感器分别探测胞格结构、火焰位置和内部压力。结果表明,甲烷/氧气掺氢后可以有效提高爆轰波的传播速度,且掺氢浓度越高,传播速度越快;同时,氢气的掺入可减少管道出口处的速度亏损并在初始压力较低时加速火焰和激波的耦合,降低胞格尺寸,提高爆轰敏感性。

  相似文献   

15.

氢能作为一种最具潜力的清洁能源,具有燃烧速率快和转化效率高等优点,可将其与天然气掺混作为工业、商用或民用燃具燃料使用。国际上多个国家相继制定天然气掺氢应用于居民用户的计划,并开展示范验证。本文基于掺氢天然气燃烧特性参数理论分析计算,并参照相应国家标准,通过实验测试的手段论证家用燃气具使用掺氢天然气的适应性和安全性,以此分析家用燃气具在不做任何调整的情况下可以承受的掺氢比例。

  相似文献   

16.
连通装置气体爆炸特性实验   总被引:3,自引:0,他引:3  
为了研究连通装置气体爆炸特性及其发生、发展规律,建立了气体爆炸测试系统,得到了密闭条件下连通装置气体爆炸特性,揭示了连通装置气体爆炸过程爆炸强度增加机理,为连通装置气体爆炸防爆安全设计提供参考.  相似文献   

17.

随着掺氢运输迅猛发展,原有的放空系统又产生了新的安全隐患和风险因素。为了保障掺氢管道放空作业时设备和人员的安全,本文基于事故分析模型,通过分析掺氢管道的放空流程,确定放空系统失效事故的安全约束条件,建立放空作业控制与反馈模型,识别控制模型中潜在的不安全控制行为,确定不同的不安全控制行为产生的风险及对应的安全约束,对掺氢管道的风险性进行分析研究,提高掺氢管道放空作业的安全性。

  相似文献   

18.
段玉龙  王硕  贺森  万琳 《爆炸与冲击》2020,40(9):113-121
为分析多孔材料对预混气体爆炸特性参数的影响效果,采用自主搭建的爆炸实验平台,探究不同孔隙度和厚度的多孔材料对当量比为1的甲烷/空气预混气体爆炸的作用行为。实验研究表明,不同孔隙度的多孔材料对爆炸火焰和超压具有促进或抑制两种不同的影响。孔隙度较小时,爆燃火焰传播速度随着材料厚度的增大而降低,并在厚度较大时,火焰有短暂的传播延时现象。孔隙度较大时,预混火焰冲击多孔材料时发生淬熄,但随后一段时间内,由于负压抽吸作用,在已爆区域一侧的材料表面产生扩散燃烧现象,且扩散燃烧程度与材料厚度成反比关系。多孔材料的固相结构能降低压力的泄放效率,同时可吸收能量,进而提高爆炸超压的上升速率,降低超压峰值。当每英寸长度孔数δ=10的多孔材料促进火焰传播时,与当量比为1的预混气体爆炸相比,超压峰值最大可提高约2倍,造成更严重的后果。火焰冲击δ=20的多孔材料时发生淬熄,最大超压衰减可达47.17%,δ=30时最大超压衰减了24.62%。  相似文献   

19.

掺氢天然气随已有管网输送到用户燃烧利用,是低成本大规模利用氢能的方式之一。掺氢比变化会影响燃烧设备运行参数,使设备回火特性发生变化。因此,本文定义参数β定量比较预混气体未燃侧流速和火焰传播速度的变化幅度大小,以表征设备回火风险。通过实验数据校核,当β < 0.6时,实际燃烧设备发生回火的风险显著增加;掺氢后燃气灶具(0.2 < β < 1)相比于预混的燃气锅炉(0.95 < β < 1.4)更容易发生回火,维持其安全运行所耐受的掺氢比更低。

  相似文献   

20.
球形容器内气体的泄爆过程   总被引:2,自引:0,他引:2  
为了得到球形容器内可燃气体的泄爆强度产生机理以及燃烧火焰与压力传播的基本规律,从流体力学和化学反应动力学守恒出发,采用-湍流模型和EBU-Arrhenius燃烧模型,利用SIMPLE算法对带泄爆导管的球形容器二维空间内甲烷-空气预混气体的泄爆过程内外场进行了数值计算,获得了气体燃烧过程中火焰和压力传播特性以及气体流动特性,能够比较清晰地反映泄爆的整个过程。研究表明,燃烧火焰在泄爆过程中发生湍流,传播得到了极大的加速,泄爆导管对于容器内的高压气体泄放有很大的约束作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号