首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
可调谐激光吸收光谱技术(TDLAS)由于其高灵敏度、高选择性等优势广泛用于痕量气体检测领域。然而其测量结果容易受到目标气体压力波动的影响,特别是在大气环境下尤为明显,现有方法多为在现场安装压力传感器,对测量结果进行校正。提出了一种无需压力传感装置的气体浓度修正方法。选取碰撞展宽占主导地位的气体吸收谱线,分别建立谱线展宽与波长调制光谱一次谐波(WMS-1f)信号的峰谷值间距和二次谐波(WMS-2f)过零点间距的解析表达式,通过测量一次谐波峰谷值间距或二次谐波过零点间距直接得到被测气体压强,进而利用波长调制光谱一次谐波归一化的二次谐波(WMS-2f/1f)技术补偿测量环境中压力波动对气体浓度测量结果的影响。实验以浓度为1 980 mg·m~(-3)的CO_2为目标气体,选取其位于4 989.97 cm~(-1)的吸收作为目标谱线,在大气压附近进行不同调制深度的变压力测量实验,通过实验分析了压强变化对二氧化碳吸收谱线谐波信号的影响,利用一次谐波峰谷值间距和二次谐波过零点间距分别反演了气体压强,并与气体压强传感器测得的压强数据进行对比,压强偏差在1%以内,验证了通过谐波间距解析表达式计算压强的正确性及通过测量谐波间距对浓度补偿的可行性。最后利用WMS-2f/1f技术和通过谐波间距测得的压强数据对气体浓度进行压强补偿修正,结果表明通过测量谐波间距修正后的浓度与通过高精度压力表补偿后浓度相比误差小于2%,与通过谐波间距推导得出的压力不确定度(小于2%)一致,验证了该方法的可行性和有效性,进一步提高了TDLAS技术在压强波动较大环境下进行气体浓度检测的测量精度。利用谐波间距对气体浓度补偿的方法无需额外的气体压力传感器,简单易行,特别适合于大气环境中气体成分的高灵敏高精度开放光路遥测,也可用于气体浓度和压强的同时测量。  相似文献   

2.
提出了一种多模二极管激光吸收光谱测量系统,该系统以发射谱稳定的多模二极管激光器作为光源,结合长程吸收技术和谐波检测技术,通过对1570nm CO分子多条吸收谱线的探测,实现了对CO浓度(即指体积分数)的测量。实验在室温和20.265kPa(即0.2个标准大气压)条件下进行,通过配置不同的CO-N2混合气体,对一系列不同浓度的样品气体进行了测量。测量前通过9种不同浓度的CO-N2混合气体对系统进行定标,获得定标公式,用得到的定标公式进行CO浓度的反演。结果表明,在CO体积分数低于10%的情况下,浓度测量值与已知值一致性较高,平均偏差为2.57%;通过对CO体积分数为0.5%的混合气体测量信号进行分析,得到系统对CO的探测极限为3.03×10-5。该系统可以满足CO的在线监测,且稳定性高、灵敏度高,实验装置简单、易用。  相似文献   

3.
可调谐半导体激光吸收光谱法对高温甲烷的测量研究   总被引:1,自引:0,他引:1  
可调谐半导体激光吸收光谱(TDLAS)是一种具有高灵敏度、高分辨率、快速检测特点的气体检测技术,已广泛用于大气中多种痕量气体的检测以及地面的痕量气体和气体泄漏的检测。研究了利用TDLAS技术测量高温下甲烷浓度的实验方法,使用可加热的静态吸收池对在1653.72nm波长附近R(3)支转动跃迁的吸收线进行了测量,并计算了吸收线强。分别在相同温度不同浓度和相同浓度不同温度的两种条件下进行了实验。结果表明,利用直接吸收的方法,在实验室可以得到370K时的最小可探测限为100×10-6,500K时的最小可探测限为245×10-6(吸收池长度为10cm),可以应用在燃烧控制及喷焰气体浓度测量等多个领域。  相似文献   

4.
针对可调谐半导体激光吸收光谱技术(TDLAS)需要在整个谱线上扫描导致扫描过程中可能存在其他谱线干扰以及测量速度较慢的问题,提出了固定波长激光直接吸收测量方法。该方法采用固定波长下的直接吸收计算气体浓度,完全避免了谱线干扰的问题,并且提高了测量速度,尤其适合于动态燃烧化学反应的研究。通过在气体吸收池中对不同工况下的CO气体的温度以及浓度进行了测量,验证了方法的准确性,说明这种固定波长激光直接吸收测量方法同TDLAS方法一样可以应用于气体浓度和温度的测量。  相似文献   

5.
贾巍  何莹 《应用光学》2018,39(6):809-814
随着工业化进程加快,大气污染监控已受到广泛关注,为实现工业过程痕量气体浓度的准确监测,采用可调谐半导体激光吸收光谱技术(TDLAS)搭建了气体浓度在线监测系统,并以LabVIEW为软件开发平台完成了可视化界面。重点设计了数据处理功能及浓度反演算法,通过同步获取的环境压力参数对特征吸收光谱的有效拟合范围进行修正,提高吸光度信号的准确性,再通过读取的环境温度参数修正气体吸收线强以获得精确的浓度结果。将该系统应用于高温氨浓度在线测量实验中,获得高温不同压力下的氨气浓度测量结果。实验结果表明,在500 K温度下,不经过压力、温度参数修正的最大氨浓度反演偏差为18.81%,通过参数判断后再进行光谱提取和修正,得到浓度最大偏差为3.96%。该系统能够准确反演不同环境参数(压力、温度)下的气体浓度,实现了工业高温现场气体的实时、精确在线测量。  相似文献   

6.
在基于可调谐二极管激光吸收光谱技术(tunable diode laser absorption spectroscopy,TDLAS)进行多种组分混合气体测量时,经常会遇到吸收谱线之间存在相互干扰的现象,这也是使用该技术测量过程中的主要"瓶颈".比如在前期的应用中:微量一氧化碳(CO)和甲烷气体(CH4)在同时检测时两者的吸收谱线存在严重的重叠干扰现象,特别是在高浓度CH4存在的环境下,微量CO气体吸收信号会被干扰甚至湮没,无法实现有效解调,这是通过谱线选取所不能解决的问题.因此,针对此问题本文提出了基于支持向量回归模型,以CO和CH4吸收谱线的严重重叠干扰问题为例,通过选择线性核函数建立CO支持向量回归模型和CH4支持向量回归模型,可对CO和CH4的混合气体吸收谱线进行解调,最终获得两种气体浓度的准确测量结果.通过实验分别实现了四种不同浓度CH4环境下微量CO气体的检测,得到的CO和CH4浓度(气体的体积分数)测量的绝对误差分别小...  相似文献   

7.
为减小调制噪声背景的干扰,提出了直接吸收光谱激光检测气体浓度反演的三级卷积降噪信号处理方法.以谱线6 612.939cm-1附近氨气分子吸收为例,分析了该降噪方法对氨气浓度反演的有效性.实验结果表明,经三级卷积降噪后的氨气原始吸收谱线信号整体均方根误差由初始8.53降至1.01,基线扣除归一化得到的氨气光谱吸收率谱线信噪比提高3.3倍;连续5次测量浓度5%标准氨气,反演浓度值平均偏差为0.0743%,相对标准偏差为1.4%,优于原始吸收谱线信号的小波降噪和不降噪处理反演值.采用三级卷积降噪方法预处理原始吸收谱线信号,提高了气体浓度反演精度,可为工业过程高浓度气体激光在线检测提供参考.  相似文献   

8.
利用可调谐半导体激光吸收光谱(TDLAS)结合平衡差分探测技术测量了1.578 μm附近的CO气体3-0带P(4)跃迁在不同压强和不同浓度下的吸收光谱信号。由于平衡差分探测方法可以有效地抑制激光光强波动、温度漂移和机械振动等共模噪声,从而提高了光谱探测灵敏度。通过与直接吸收信号相比,平衡差分的信噪比提高了3.4倍,探测极限为87 ppmv。测量了浓度为1%压强为40,55,70和85 Torr时的CO气体,结果显示在70 Torr时其光谱信号最强。并且,利用直接吸收和平衡差分技术测量了不同浓度的CO气体在总压强在70 Torr时的光谱信号,发现平衡差分技术光谱强度与浓度的关系线性度符合较好,其测量误差小于5%。为了进一步验证系统的稳定性,连续采集了324 s的光谱信号,最后通过Allan方差分析,发现本实验系统的最佳探测时间为38 s,探测极限为47.8 ppmv。  相似文献   

9.
波长调制-直接吸收光谱(WM-DAS)结合了直接吸收光谱(DAS)可直接测量吸收率和波长调制光谱(WMS)高信噪比的优点,可用于测量气体分子吸收谱线的光谱参数。采用WM-DAS方法结合有效光程约为45 m的Herriott型长光程吸收池,在CO浓度为24.151μmol·L-1、常温常压条件下,测量了CO分子中心频率为4 300.700 cm-1谱线的吸收率,用Voigt线型(VP)函数对测量的吸收率进行拟合,结果表明对WM-DAS方法测量结果进行拟合所得的残差标准差比用传统DAS方法减小一半以上,证明WM-DAS方法的抗干扰能力比DAS更强。采用该方法与光程约为50 cm的吸收池结合,对CO分子在4 278~4 304 cm-1波段的8条弱吸收谱线在不同压力下的吸收率进行测量,实验采用浓度为0.411μmol·L-1的CO标准气体。分别采用VP、 Raution线型(RP)和quadratic-speed-dependent-Voigt线型(qSDVP)对测量所得吸收率进行拟合,得到CO分子与空气...  相似文献   

10.
可调谐半导体激光吸收光谱技术(tunable diode laser absorption spectroscopy, TDLAS)是利用二极管激光器的波长调谐特性,获得被选定的待测气体特征吸收线的吸收光谱,从而对待测气体进行定性或定量分析。它具有高灵敏、高分辨以及快速检测等特点,已经广泛用于大气中多种痕量气体的检测以及泄漏气体的检测,也是在燃烧环境下对气体进行非侵入式实时测量的理想方法。TDLAS技术与开放式的多次反射池相结合,并利用自平衡探测加波长调制的新型检测方法,测量了酒精喷灯燃烧过程中产生的CO浓度,从测量结果中发现酒精喷灯火焰中CO的浓度成一定的周期性,并且得到火焰中CO的平均浓度为49.4(10-6体积比)。实验结果表明利用开放式多次反射池,结合自平衡探测加波长调制探测的新方法,满足了酒精喷灯燃烧过程中CO检测的需要,此系统为发展基于TDLAS的燃烧在线诊断技术奠定了基础。  相似文献   

11.
CO是碳氢燃料不完全燃烧的重要产物,常常被作为反应燃烧效率的标志物,燃烧场CO组分浓度的精确测量对提高燃烧效率、减少污染物排放具有重要意义。离轴积分腔输出光谱(OA-ICOS)是一种利用物质对激光的特异性吸收,实现对该物质分析和测量的技术,具有非接触、稳定和高灵敏度等优点。针对燃烧场CO浓度低,背景信号干扰强等特点,采用分布反馈式(DFB)激光器搭建基于离轴积分腔输出光谱的CO浓度测量系统,通过直接吸收光谱的测量方法实现对高温燃烧场CO浓度测量。利用仿真模拟的方法,在所用激光器中心波长的附近选出了常温下谱线强度较为突出,高温下不受其他燃烧产物干扰的第一泛频带R(10)吸收谱线。通过固定光程池对比吸光度的方法标定了OA-ICOS系统的有效光程;通过比较不同扫描频率下吸收谱线的信噪比和线型拟合残差标准差,得到最佳波长扫描频率;通过测量不同浓度CO混合气体的吸收信号分析了系统误差。探究了不同燃烧情况下CH4/Air预混平焰炉上CO的产生情况,根据燃烧场测量区域温度分布情况描述了温度分布不确定度对CO测量结果的影响。当量比为1.0时,在10 ms的测量时间分辨率下,噪声等...  相似文献   

12.
差分吸收光谱法监测NO2浓度技术研究   总被引:7,自引:0,他引:7  
差分吸收光谱(DOAS)是利用气体分子对光谱具有特殊吸收这一特性来测量气体浓度的一种测量技术.本文介绍了DOAS法的基本测量原理,分析了DOAS的数据处理方法,并用DOAS法进行了不同情况时NO2气体浓度测量的实验研究.  相似文献   

13.
基于TDLAS技术的水汽低温吸收光谱参数测量   总被引:2,自引:0,他引:2       下载免费PDF全文
聂伟  阚瑞峰  许振宇  姚路  夏晖晖  彭于权  张步强  何亚柏 《物理学报》2017,66(20):204204-204204
精确的气体光谱参数对气体浓度、温度等的光谱精确反演测量具有十分重要的意义,针对当前主流光谱数据库(例如HITRAN)中数据与实际数值存在相当误差的问题,自主研制了一套基于静态冷却技术的低温光谱实验平台,用于精确测量低温下的气体吸收光谱参数.运用该低温光谱实验平台,采用可调谐二极管激光吸收光谱(TDLAS)技术测量了温度为230—340 K、压强为10—1000 Pa时7240—7246 cm~(-1)波段的纯水汽振转跃迁光谱.采用Voigt线型多峰拟合方法,获得了5条水汽振转跃迁谱在不同温度、不同压强下的积分吸光度值及洛伦兹展宽值,运用线性拟合的方法得到这5条吸收线的自展宽半峰全宽系数及参考温度下的线强值.运用不确定度传递公式,计算得到实验结果的不确定度,与HITRAN2012数据库中的线参数进行对比,所测的5条吸收线中实验结果与数据库值最大相差10.96%,且实验结果的不确定度为1.11%—2.98%(置信概率p=95%,包含因子k=2),小于HITRAN2012数据库值的不确定度.  相似文献   

14.
离轴积分腔输出光谱技术是痕量气体检测的重要方法,这种测量方法的检测限容易受到残余腔模式噪声和背景噪声的影响。通过注入射频白噪声到激光器的调制电流中,以减小离轴积分腔输出光谱中的残余腔模式噪声,同时利用波长调制技术抑制了背景信号的影响,进一步提高了基于离轴积分腔输出光谱技术的甲烷传感系统的信噪比。首先,详细研究了不同功率射频白噪声对空气中甲烷吸收光谱的影响,并对吸收谱的线宽进行了分析,计算出了不同功率噪声扰动下的吸收谱对应的最佳调制幅度。随后,研究了不同功率的射频白噪声对2f信号的影响。结果表明,随着扰动噪声功率的增加,基线噪声水平和2f信号幅值同时减小。对几组2f信号的信噪比进行分析,确定了射频白噪声提高系统信噪比的最佳功率为-25 dBm。最后,研究了0.05~2.2×10~(-6)浓度范围内,甲烷浓度与2f信号之间的对应关系,结果表明:在甲烷浓度小于1.0×10~(-6)时,甲烷浓度与2f信号之间的线性度为0.999 6;在甲烷浓度为0.1~2.2×10~(-6)时,甲烷浓度与2f信号之间呈曲线关系,二阶多项式拟合的相关度为0.999 89。此外,对浓度为2.2×10~(-6)的甲烷气体进行了长时间的测量,并利用Allan方差对系统的稳定性进行了分析,分析结果表明系统的最佳积分时间为1 250 s,系统的可探测极限约为1.2×10~(-9)。最后,使用建立的甲烷气体探测系统,对大气环境中的甲烷气体浓度进行了长达两个昼夜的检测,结果显示甲烷浓度的昼夜变化规律是昼降夜升,浓度昼夜波动范围在2.02~2.3×10~(-6)范围内,平均浓度为2.14×10~(-6)。本研究为离轴积分腔输出光谱技术在痕量气体测量方面的应用提供了一定的参考,对高精密的原位痕量气体测量仪器的研发具有重要的指导价值。  相似文献   

15.
可调谐二极管激光吸收光谱法测量气体温度   总被引:3,自引:1,他引:2  
王健  黄伟  顾海涛  高秀敏  刘立鹏 《光学学报》2007,27(9):1639-1642
研究了一种新型的非接触式测温技术——可调谐二极管激光吸收光谱(TDLAS)测温技术。介绍了温度测量及调制吸收光谱技术原理,分析了调制幅度对气体温度测量的影响。优选了氧气吸收谱线对13163.78 cm-1和13164.18 cm-1,在搭建的高温实验系统上,实现了气体温度和浓度的同时测量。通过分析实测波形获得了谱线13164.18 cm-1在823~1323 K温度范围内的碰撞展宽系数和温度指数。实验结果表明,在823~1323 K温度范围内,系统温度测量的线性误差为0.65%,最大波动为±15 K。  相似文献   

16.
氟化氢(HF)是变电站气体绝缘开关进行故障诊断的重要特征气体之一,因此HF气体的高测量精度,快速响应,实时在线检测的方法是工业和环境领域的研究重点之一。结合激光吸收光谱技术和蒙乃尔钢材加工的耐腐蚀多次反射池搭建HF检测实验系统;分析了HF气体在不同温度下的激光吸收光谱特性,根据HITRAN数据库的HF气体配分函数系数得到配分函数曲线和吸收线强曲线;在研究工作中重点设计了结合激光光谱解析和温度参数修正的浓度反演算法以实现气体浓度的准确检测;结合多次反射吸收池的温度特性利用不同浓度配比的HF样气得到连续实验结果。多次反射池加热后并稳定工作在313和323 K时,温度修正前浓度反演的最大相对误差分别为5.33%和5.87%,温度修正后浓度反演的最大相对误差分别为1.20%和1.47%。通过连续检测和计算,系统在323K时HF检出限为8.7×10-5 mmol·mol-1,高于290K时的检出限6.3×10-5 mmol·mol-1(20 m光程)。尽管高温环境下温度修正后的检测误差大于室温情况,但是同一高温下温度修正后的检测误差仍低于未经过温度修正的值。通过该研究证明了本浓度反演算法工作稳定、可靠,可以满足化工生产现场HF实时监测的需求,对于我国工业HF气体的安全排放监管和环境保护起有效的技术支持。  相似文献   

17.
气体分子吸收谱线的光谱参数是影响吸收光谱测量精度的重要因素,分子光谱数据库中收录的光谱参数大都具有较大的不确定度,用以测量气体温度等参数时会产生较大的测量误差。为了获得可用于燃烧场诊断的H2O谱线的光谱参数,采用时分复用技术,在温度、压强和H2O组分浓度可控的环境中对1.4 μm附近的吸收光谱开展了研究。对7 185.60和7 454.45 cm-1两条H2O谱线的线强度、展宽系数及其温度指数等光谱参数进行测量,实验结果表明,两条谱线的线强度测量值与数据库中的值偏差分别小于2.61%和4.65%,不确定度都小于4%。  相似文献   

18.
快速、精确地测量微量气体浓度的技术在大气质量分析、环境污染检测等领域具有广泛的用途。在红外光谱检测技术中,气体吸收光谱的谱线线型函数是定量测量气体浓度的一个重要参量,而如何准确和快速地得到气体谱线线型函数值是气体浓度测量中的一个关键问题。首先从理论上分析了谱线线型函数,得出计算谱线线型函数的一般方法及探讨了气体浓度与谱线线型函数峰值之间的关系。然后,利用可调激光器及光谱仪检测系统测量了乙炔在1 515~1 545 nm波长范围内的吸收光谱,再通过Lambert-Beer定律计算得到在不同频率下的谱线线型函数峰值,最后利用程序拟合出该波段内气体的谱线线型函数峰值分布曲线,并与Voigt线型函数理论计算值进行了比较,发现理论计算的谱线线型函数峰值仍存在一定的偏差。相比理论计算结果,所提出的检测方法得到的乙炔浓度与真实的乙炔浓度值更加吻合,表明了通过实验确定的谱线线型函数的经验公式可以更好地用于气体浓度的检测。由于利用实验测量值获得了谱线线型函数峰值分布的拟合曲线,因此可以快速准确地计算出所对应的谱线线型函数峰值,从而大大地简化了线型函数的计算过程。实验所获得的数据可应用于光学遥测乙炔气体浓度,且提供的方法也可以应用到其他气体的谱线线型函数峰值的测量中。  相似文献   

19.
在可调谐激光吸收光谱(TDLAS)技术中,携带气体浓度信息的二次谐波信号易受激光扫描信号与调制信号的幅值、频率等参数影响。基于TDLAS技术搭建了CO浓度检测硬件系统,与对应仿真模型进行比较分析,研究了调制参数对二次谐波信号峰值、信噪比、对称性以及峰宽的影响,总结出具体变化规律。实验确定了系统最优调制参量,在硬件不变的情况下提高了检测精度。对CO在1567.7nm的吸收光谱进行了检测,发现测量浓度随着温度的升高而降低,最大相对误差已超过15%。为了减少温度变化对测量的影响,分别采用RBF及BP神经网络、PSO优化BP神经网络和WOA优化BP神经网络算法对系统进行补偿。结果表明,WOA优化BP神经网络方法的补偿效果最好,修正后浓度相对误差降至1%以下,有效提高了系统在变温环境下的准确性和稳定性。研究为系统的调制参数设置以及精准检测提供参考,为后续实验提供了有价值的指导。  相似文献   

20.
可调谐半导体激光吸收光谱作为一种高灵敏度、高选择性、非侵入的痕量气体实时检测技术,已在大气监测、工业控制等方面得到广泛应用。采用一种新型宽带可调谐的SG-DBR半导体激光器(可调谐范围1 520~1 570 nm)作光源,并通过自编程序对该激光器设定了18个通道,输出波长分别对应CO,CO2以及H2O的吸收谱线中心位置,设计和构建了一个基于近红外可调谐半导体激光吸收光谱的多组分气体光谱测量系统,描述了相关的光学系统设置,结合波长调制(wm)的二次谐波技术测量其中14个通道(分别对应CO和CO2的吸收谱线)的吸收光谱,系统获得的CO和CO2峰值吸收探测极限能够达到10-5。实验结果验证了SG-DBR激光器在波长调制吸收光谱多组分气体检测领域的可行性。在实际应用过程中使用单个SG-DBR激光器可以实现多组分气体的同时测量,有效降低设备成本和系统复杂性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号