首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A graph is called weakly triangulated if it contains no chordless cycle on five or more vertices (also called hole) and no complement of such a cycle (also called antihole). Equivalently, we can define weakly triangulated graphs as antihole-free graphs whose induced cycles are isomorphic either to C3 or to C4. The perfection of weakly triangulated graphs was proved by Hayward [Hayward, J Combin Theory B. 39 (1985), 200–208] and generated intense studies to efficiently solve, for these graphs, the classical NP-complete problems that become polynomial on perfect graphs. If we replace, in the definition above, the C4 by an arbitrary Cp (p even, at least equal to 6), we obtain new classes of graphs whose perfection is shown in this article. In fact, we prove a more general result: for any even integer p ≥ 6, the graphs whose cycles are isomorphic either to C3 or to one of Cp, Cp+2, …, C2p 6 are perfect. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 73–79, 1999  相似文献   

2.
A graph G is bridged if every cycle C of length at least 4 has vertices x,y such that dG(x,y) < dC(x,y). A cycle C is isometric if dG(x,y) = dC(x,y) for all x,yV(C). We show that every graph contractible to a graph with girth g has an isometric cycle of length at least g. We use this to show that every minimal cutset S in a bridged graph G induces a connected subgraph. We introduce a “crowning” construction to enlarge bridged graphs. We use this to construct examples showing that for every connected simple graph H with girth at least 6 (including trees), there exists a bridged graph G such that G has a unique minimum cutset S and that G[S] = H. This provides counterexamples to Hahn's conjecture that dG(u,v) ≤ 2 when u and v lie in a minimum cutset in a bridged graph G. We also study the convexity of cutsets in bridged graphs. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 161–170, 2003  相似文献   

3.
Let S1, S2,…,St be pairwise disjoint non‐empty stable sets in a graph H. The graph H* is obtained from H by: (i) replacing each Si by a new vertex qi; (ii) joining each qi and qj, 1 ≤ i # jt, and; (iii) joining qi to all vertices in H – (S1S2 ∪ ··· ∪ St) which were adjacent to some vertex of Si. A cograph is a P4‐free graph. A graph G is called a cograph contraction if there exist a cograph H and pairwise disjoint non‐empty stable sets in H for which G ? H*. Solving a problem proposed by Le [ 2 ], we give a finite forbidden induced subgraph characterization of cograph contractions. © 2004 Wiley Periodicals, Inc. J Graph Theory 46: 217–226, 2004  相似文献   

4.
On stable cutsets in claw-free graphs and planar graphs   总被引:4,自引:0,他引:4  
A stable cutset in a connected graph is a stable set whose deletion disconnects the graph. Let K4 and K1,3 (claw) denote the complete (bipartite) graph on 4 and 1+3 vertices. It is NP-complete to decide whether a line graph (hence a claw-free graph) with maximum degree five or a K4-free graph admits a stable cutset. Here we describe algorithms deciding in polynomial time whether a claw-free graph with maximum degree at most four or whether a (claw, K4)-free graph admits a stable cutset. As a by-product we obtain that the stable cutset problem is polynomially solvable for claw-free planar graphs, and also for planar line graphs.Thus, the computational complexity of the stable cutset problem is completely determined for claw-free graphs with respect to degree constraint, and for claw-free planar graphs. Moreover, we prove that the stable cutset problem remains NP-complete for K4-free planar graphs with maximum degree five.  相似文献   

5.
A graph chordal if it does not contain any cycle of length greater than three as an induced subgraph. A set of S of vertices of a graph G = (V,E) is independent if not two vertices in S are adjacent, and is dominating if every vertex in V?S is adjacent to some vertex in S. We present a linear algorithm to locate a minimum weight independent dominating set in a chordal graph with 0–1 vertex weights.  相似文献   

6.
We prove a decomposition theorem for even‐hole‐free graphs. The decompositions used are 2‐joins and star, double‐star and triple‐star cutsets. This theorem is used in the second part of this paper to obtain a polytime recognition algorithm for even‐hole‐free graphs. © 2002 John Wiley & Sons, Inc. J Graph Theory 39: 6–49, 2002  相似文献   

7.
8.
A graph is matching-covered if every edge of is contained in a perfect matching. A matching-covered graph is strongly coverable if, for any edge of , the subgraph is still matching-covered. An edge subset of a matching-covered graph is feasible if there exist two perfect matchings and such that , and an edge subset with at least two edges is an equivalent set if a perfect matching of contains either all edges in or none of them. A strongly matchable graph does not have an equivalent set, and any two independent edges of form a feasible set. In this paper, we show that for every integer , there exist infinitely many -regular graphs of class 1 with an arbitrarily large equivalent set that is not switching-equivalent to either or , which provides a negative answer to a problem of Lukot’ka and Rollová. For a matching-covered bipartite graph , we show that has an equivalent set if and only if it has a 2-edge-cut that separates into two balanced subgraphs, and is strongly coverable if and only if every edge-cut separating into two balanced subgraphs and satisfies and .  相似文献   

9.
We introduce a new approach and prove that the maximum number of triangles in a C 5 -free graph on n vertices is at most ( 1 + o ( 1 ) ) 1 3 2 n 3 2 . We show a connection to r-uniform hypergraphs without (Berge) cycles of length less than six, and estimate their maximum possible size. Using our approach, we also (slightly) improve the previous estimate on the maximum size of an induced- C 4 -free and C 5 -free graph.  相似文献   

10.
We show the existence of rainbow perfect matchings in μn‐bounded edge colorings of Dirac bipartite graphs, for a sufficiently small μ > 0. As an application of our results, we obtain several results on the existence of rainbow k‐factors in Dirac graphs and rainbow spanning subgraphs of bounded maximum degree on graphs with large minimum degree.  相似文献   

11.
We prove that in all regular robust expanders G $$ G $$ , every edge is asymptotically equally likely contained in a uniformly chosen perfect matching M $$ M $$ . We also show that given any fixed matching or spanning regular graph N $$ N $$ in G $$ G $$ , the random variable | M E ( N ) | $$ \mid M\cap E(N)\mid $$ is approximately Poisson distributed. This in particular confirms a conjecture and a question due to Spiro and Surya, and complements results due to Kahn and Kim who proved that in a regular graph every vertex is asymptotically equally likely contained in a uniformly chosen matching. Our proofs rely on the switching method and the fact that simple random walks mix rapidly in robust expanders.  相似文献   

12.
We discuss some new and old results about skew partitions in perfect graphs.  相似文献   

13.
张洪申  何一农 《应用数学》2007,20(3):496-499
本文研究了单位圆内无限级拟亚纯映射的充满圆,证明了单位圆内存在充满圆序列;Borel点邻域内存在充满圆序列.  相似文献   

14.
15.
A locally connected spanning tree of a graph G is a spanning tree T of G such that the set of all neighbors of v in T induces a connected subgraph of G for every vV(G). The purpose of this paper is to give linear-time algorithms for finding locally connected spanning trees on strongly chordal graphs and proper circular-arc graphs, respectively.  相似文献   

16.
Summary. The global dynamics of flexible spinning discs are studied. The discs studied are parametrically excited in their spin rate, and have imperfections that cause symmetry-breaking. After determining the equations of motion in a suitable form, the energy-phase method is employed to show the existence of chaotic dynamics by identifying multipulse jumping orbits in the perturbed phase space. We provide restrictions on the damping, forcing, and symmetry-breaking parameters in order for these complicated dynamics to occur. The dissipative version of the energy-phase method predicts a wider range of values for which chaotic dynamics occurs than the traditional Melnikov method. The results are then discussed in terms of the physical motion of the spinning disc system. The multipulse orbits are manifested in the physical system as a shifting between two different nodal configurations of the disc. When the motion is chaotic, an observer will see a random jumping between the two nodal configurations of the disc. Received February 7, 2000; accepted November 18, 2001  相似文献   

17.
It is an old problem in graph theory to test whether a graph contains a chordless cycle of length greater than three (hole) with a specific parity (even, odd). Studying the structure of graphs without odd holes has obvious implications for Berge's strong perfect graph conjecture that states that a graph G is perfect if and only if neither G nor its complement contain an odd hole. Markossian, Gasparian, and Reed have proven that if neither G nor its complement contain an even hole, then G is β‐perfect. In this article, we extend the problem of testing whether G(V, E) contains a hole of a given parity to the case where each edge of G has a label odd or even. A subset of E is odd (resp. even) if it contains an odd (resp. even) number of odd edges. Graphs for which there exists a signing (i.e., a partition of E into odd and even edges) that makes every triangle odd and every hole even are called even‐signable. Graphs that can be signed so that every triangle is odd and every triangle is odd and every hole is odd are called odd‐signable. We derive from a theorem due to Truemper co‐NP characterizations of even‐signable and odd‐signable graphs. A graph is strongly even‐signable if it can be signed so that every cycle of length ≥ 4 with at most one chord is even and every triangle is odd. Clearly a strongly even‐signable graph is even‐signable as well. Graphs that can be signed so that cycles of length four with one chord are even and all other cycles with at most one chord are odd are called strongly odd‐signable. Every strongly odd‐signable graph is odd‐signable. We give co‐NP characterizations for both strongly even‐signable and strongly odd‐signable graphs. A cap is a hole together with a node, which is adjacent to exactly two adjacent nodes on the hole. We derive a decomposition theorem for graphs that contain no cap as induced subgraph (cap‐free graphs). Our theorem is analogous to the decomposition theorem of Burlet and Fonlupt for Meyniel graphs, a well‐studied subclass of cap‐free graphs. If a graph is strongly even‐signable or strongly odd‐signable, then it is cap‐free. In fact, strongly even‐signable graphs are those cap‐free graphs that are even‐signable. From our decomposition theorem, we derive decomposition results for strongly odd‐signable and strongly even‐signable graphs. These results lead to polynomial recognition algorithms for testing whether a graph belongs to one of these classes. © 1999 John Wiley & Sons, Inc. J Graph Theory 30: 289–308, 1999  相似文献   

18.
An (h,s,t)-representation of a graph G consists of a collection of subtrees of a tree T, where each subtree corresponds to a vertex in G, such that (i) the maximum degree of T is at most h, (ii) every subtree has maximum degree at most s, (iii) there is an edge between two vertices in the graph G if and only if the corresponding subtrees have at least t vertices in common in T. The class of graphs that have an (h,s,t)-representation is denoted by [h,s,t]. It is well known that the class of chordal graphs corresponds to the class [3, 3, 1]. Moreover, it was proved by Jamison and Mulder that chordal graphs correspond to orthodox-[3, 3, 1] graphs defined below.In this paper, we investigate the class of [h,2,t] graphs, i.e., the intersection graphs of paths in a tree. The [h,2,1] graphs are also known as path graphs [F. Gavril, A recognition algorithm for the intersection graphs of paths in trees, Discrete Math. 23 (1978) 211-227] or VPT graphs [M.C. Golumbic, R.E. Jamison, Edge and vertex intersection of paths in a tree, Discrete Math. 55 (1985) 151-159], and [h,2,2] graphs are known as the EPT graphs. We consider variations of [h,2,t] by three main parameters: h, t and whether the graph has an orthodox representation. We give the complete hierarchy of relationships between the classes of weakly chordal, chordal, [h,2,t] and orthodox-[h,2,t] graphs for varied values of h and t.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号