首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张静  王玲玲  单联国  卫引茂 《色谱》2012,30(8):804-809
用硅胶与氨丙基三甲氧基硅烷反应,再与δ-葡萄糖酸内酯反应,制备了一种多羟基化合物键合的新型亲水色谱固定相。以水-有机溶剂(乙醇、乙腈、四氢呋喃)为流动相,通过改变流动相中有机溶剂的种类及浓度、缓冲盐浓度和柱温,考察了该固定相对6种强极性中药组分的保留行为和保留机理。当水的比例在0~40%(v/v)范围时,溶质的保留随着流动相中水的比例的增大而减小,属于典型的亲水色谱分离模式;而当流动相中水的比例在0~100%(v/v)范围内变化时,溶质的保留随着水的比例变化呈“U”形曲线,属于亲水色谱和反相色谱的混合保留机理。缓冲盐的浓度和pH效应说明,所选用的中药组分与所制备的固定相间还存在弱的静电作用。该固定相对6种中药组分以及丹参注射液具有良好的分离性能,表明其在强极性中药有效成分的分离及其他强极性物质的分离分析中具有一定的应用前景。  相似文献   

2.
The potential of 1.7 μm ethylene bridged hybrid silica phase was investigated for the separation of twelve imidazolium-based ionic liquid cations. U-shaped retention profile was observed for all solutes with an increase in retention at both low and high acetonitrile content. Chromatographic behaviour of imidazolium cations in both hydrophilic interaction chromatography (HILIC) and per aqueous liquid chromatography (PALC) modes was studied by varying key parameters such as buffer concentration and pH, acid additive, organic modifier and column temperature. Experimental data provided some evidences that under PALC conditions cationic solutes are retained predominantly by mixed hydrophobic/ion-exchange interactions. In the HILIC mode, both partitioning and ion-exchange interactions are responsible for the retention of solutes. Compared to PALC, HILIC provided significantly higher efficiencies with less or even no peak tailing, better separation selectivity and greater resistance to overload. In PALC mode gradient elution was required to achieve adequate retentivity of all solutes but selectivity was not sufficient to distinguish between solutes with very similar hydrophobicity. In contrast, under HILIC conditions twelve solutes were almost completely resolved in less than 4 min by using isocratic elution. Summarizing, it could be concluded that ethylene bridged hybrid silica column providing a dual retention mechanism offers the possibility of selecting between the two retention modes with opposite separation selectivity, just by changing the composition of the mobile phase.  相似文献   

3.
A novel phosphorylcholine type zwitterionic stationary phase was synthesized by graft polymerization of 2-methacryloyloxyethyl phosphorylcholine onto the surface of porous silica particles. The resulting material possesses both negatively charged phosphoric acid and positively charged quaternary ammonium groups, which renders it a low net charge over a wide pH range. The composition of the surface grafts were determined by elemental analysis and solid state NMR, and the surface charge (zeta-potential) in different buffer solutions were measured using photon correlation spectroscopy. Separation of several peptides was investigated on packed columns in the hydrophilic interaction liquid chromatography (HILIC) separation mode. It was shown that small peptides can be separated based on hydrophilic interaction and ionic interaction between the stationary phase and analyte. The organic solvent composition, the pH and the salt concentration of the eluent have strong effects on the retention time. Compared to native silica before grafting, the newly synthesized zwitterionic material gave more stable retention times for basic peptides over pH range 3-7 due to elimination of the dissociation of silanol groups.  相似文献   

4.
Mixed-mode hydrophilic interaction/cation-exchange chromatography (HILIC/CEX) is a novel high-performance technique which has excellent potential for peptide separations. Separations by HILIX/CEX are carried out by subjecting peptides to linear increasing salt gradients in the presence of high levels of acetonitrile, which promotes hydrophilic interactions overlaid on ionic interactions with the cation-exchange matrix. In the present study, HILIC/CEX has been compared to reversed-phase liquid chromatography (RP-HPLC) for separation of mixtures of diastereomeric amphipathic alpha-helical peptide analogues, where L- and D-amino acid substitutions were made in the centre of the hydrophilic face of the amphipathic alpha-helix. Unlike RP-HPLC, temperature had a substantial effect on HILIC/CEX of the peptides, with a rise in temperature from 25 to 65 degrees C increasing the retention times of the peptides as well as improving resolution. Our results again highlight the potential of HILIC/CEX as a peptide separation mode in its own right as well as an excellent complement to RP-HPLC.  相似文献   

5.
The separation of acidic, neutral and particularly basic solutes was investigated using a bare silica column, mostly under hydrophilic interaction chromatography (HILIC) conditions with water concentrations >2.5% and with >70% acetonitrile (ACN). Profound changes in selectivity could be obtained by judicious selection of the buffer and its pH. Acidic solutes had low retention or showed exclusion in ammonium formate buffers, but were strongly retained when using trifluoroacetic acid (TFA) buffers, possibly due to suppression of repulsion of the solute anions from ionised silanol groups at the low (s)(s)pH of TFA solutions of aqueous ACN. At high buffer pH, the ionisation of weak bases was suppressed, reducing ionic (and possibly hydrophilic retention) leading to further opportunities for manipulation of selectivity. Peak shapes of basic solutes were excellent in ammonium formate buffers, and overloading effects, which are a major problem for charged bases in RPLC, were relatively insignificant in analytical separations using this buffer. HILIC separations were ideal for fast analysis of ionised bases, due to the low viscosity of mobile phases with high ACN content, and the favourable Van Deemter curves which resulted from higher solute diffusivities.  相似文献   

6.
In the present study, we developed a novel online hydrophilic interaction chromatography (HILIC)-RPLC separation system for simultaneous separation of both hydrophilic and hydrophobic solutes in a complex sample with one injection. A HILIC Si column and a C18 column were hyphenated with an interface including two electronic 2-position valves, a solvent pump, and a solute transfer column. By using column-switching technique, the nonretained hydrophobic solutes were eluted out of the HILIC column and transferred into the C18 column to perform further separation. The hydrophilic solutes were separated on the HILIC column at the same time. One detector was equipped for each column to record the individual chromatograms. By separating a standard mixture and a traditional Chinese medicine (TCM) extract, the developed HILIC-RPLC system demonstrates its potential for "entire-components" separation of complex samples with improved peak capacity and throughput compared with the common single-column LC.  相似文献   

7.
A new stationary phase which contains both negatively charged phosphate groups and positively charged amino groups was successfully synthesized by modification of amino-functionalized silica particles with trichlorophosphine oxide (POCl3) for hydrophilic interaction chromatography (HILIC). The composition of the surface grafts was determined by Fourier transform infrared spectroscopy and elemental analysis. Various parameters, such as column temperature, water content, pH values and ionic strength of the mobile phase were investigated to study the retention mechanism. The results demonstrated that the stationary phase involved a complex retention process including surface adsorption, partitioning and electrostatic interactions. Under optimized conditions, the separation of nucleobases and nucleosides, water-soluble vitamins, organic acids on the novel stationary phase could be achieved in the HILIC mode.  相似文献   

8.
以甲基丙烯酰氧乙基二甲基乙酸铵(CBMA)为功能单体,利用表面引发原子转移自由基聚合(Surface-initiated atom transfer radical polymerization, SI-ATRP)技术,将CBMA接枝到硅胶表面,得到接枝聚合物CBMA的亲水作用色谱固定相(Silica-CBMA).通过改变SI-ATRP反应体系中单体的浓度,制备了3种不同接枝量的亲水作用色谱固定相.考察了Silica-CBMA固定相对有机酸类化合物的分离性能以及流动相中pH值、盐浓度、水含量等因素对溶质保留行为的影响.结果表明,在亲水作用色谱模式下,Silica-CBMA固定相对有机酸类化合物的分离是离子交换作用与亲水作用的混合色谱模式.流动相中盐浓度增大,溶质保留减弱,符合离子交换作用特征;固定相和溶质的离子化程度受流动相pH值影响较大,pH值增大,溶质保留增强;而溶质的保留时间随流动相水含量增加而降低则是典型的亲水作用色谱特征.使用自制Silica-CBMA柱,建立了芦丁片中维生素C、芦丁含量的亲水作用色谱测定方法,操作方法简单,为强极性样品的分离测定提供了新方法.  相似文献   

9.
Cheng  Xiao-Dong  Peng  Xi-Tian  Yu  Qiong-Wei  Yuan  Bi-Feng  Feng  Yu-Qi 《Chromatographia》2013,76(23):1569-1576

A new stationary phase which contains both negatively charged phosphate groups and positively charged amino groups was successfully synthesized by modification of amino-functionalized silica particles with trichlorophosphine oxide (POCl3) for hydrophilic interaction chromatography (HILIC). The composition of the surface grafts was determined by Fourier transform infrared spectroscopy and elemental analysis. Various parameters, such as column temperature, water content, pH values and ionic strength of the mobile phase were investigated to study the retention mechanism. The results demonstrated that the stationary phase involved a complex retention process including surface adsorption, partitioning and electrostatic interactions. Under optimized conditions, the separation of nucleobases and nucleosides, water-soluble vitamins, organic acids on the novel stationary phase could be achieved in the HILIC mode.

  相似文献   

10.
This review represents a summary of the development and application of a novel mixed-mode HPLC approach to the separation and analysis of peptides and proteins termed hydrophilic interaction/cation-exchange chromatography (HILIC/CEX). This approach combines the most advantageous aspects of two widely different separation mechanisms, i.e. a separation based on hydrophilicity/hydrophobicity differences between polypeptides overlaid on a separation based on net charge. Applications described include HILIC/CEX separations of cyclic peptides, alpha-helical peptides, random coil peptides and modified or deletion products of synthetic peptides. In addition, the excellent resolving ability of HILIC/CEX for modified histone proteins is described. This approach is shown to represent an excellent complement to RP chromatography (RPC), as well as being a potent analytical tool in its own right.  相似文献   

11.
以亲水作用色谱为核心的液相色谱联用技术及其应用研究   总被引:7,自引:0,他引:7  
王媛  顾惠新  路鑫  许国旺 《色谱》2008,26(6):649-657
亲水作用色谱(HILIC)是近年来色谱领域研究的热点之一。本文围绕复杂体系样品中亲水性组分的分离分析,综述了国际上近年 来发展的以HILIC为核心的多种液相色谱联用技术及其应用。简要介绍了HILIC的起源、定义、分离特点及其常用固定相;比较了HILIC和反相色谱(RPLC)的选择特性;针对不同层次的分离对象和分离要求,讨论了多种基于HILIC的液相色谱以及液相色谱-质谱联用技术的分离特点和适用范围。  相似文献   

12.
Correspondence factor analysis (CFA) was employed to study the selectivity of 14 HPLC systems. The tested LC systems were classified as reversed-phase (RP), ion-exchange (IE) and hydrophilic interaction chromatography (HILIC) modes. It was found that the retentions of the hydrophilic solutes on HILIC column were significantly influenced by the second-order effects besides their hydrophilic properties. Organic modifiers and residue silanol groups on silica surface both participated in retention. HypersilTM amino column performed separation in the HILIC mode at appropriate conditions, and its retention mechanism was more similar to that of HILIC silica column than that of HILIC column coating poly(aspartamide) groups.  相似文献   

13.
Selected hydrophilic interaction chromatography (HILIC) columns packed with bare silica, bridge-ethyl hybrid silica, or an amide sorbent chemistry were utilized for an investigation of chromatographic behavior and separation selectivity of tryptic peptides. Retention model was proposed allowing for retention prediction of peptides with correlation coefficient R(2)~0.92-0.97 for various columns. The values of optimized amino acid retention coefficients were compared to those obtained for reversed-phase liquid chromatography (Gilar et al., Anal. Chem. 2010, 82, 265-275) and used to elucidate the impact of different amino acid on peptide HILIC retention. In contrast to reversed-phase chromatography, where presence of Phe, Trp, Ile, and Leu amino acid residues in sequence strongly promoted, and presence of hydrophilic His, Lys and Arg residues strongly reduced peptide retention, the effects of these amino acid residues in HILIC were opposite (His, Lys and Arg promote, Phe, Trp, Ile and Leu demote peptide retention in HILIC). Retention coefficient optimized for pH experiments illustrated the impact of silanols on HILIC retention.  相似文献   

14.
This work aims at characterizing interactions between a select set of probes and 22 hydrophilic and polar commercial stationary phases, to develop an understanding of the relationship between the chemical properties of those phases and their interplay with the eluent and solutes in hydrophilic interaction chromatography. "Hydrophilic interaction" is a somewhat inexact term, and an attempt was therefore made to characterize the interactions involved in HILIC as hydrophilic, hydrophobic, electrostatic, hydrogen bonding, dipole-dipole, π-π interaction, and shape-selectivity. Each specific interaction was quantified from the separation factors of a pair of similar substances of which one had properties promoting the interaction mode being probed while the other did not. The effects of particle size and pore size of the phases on retention and selectivity were also studied. The phases investigated covered a wide range of surface functional groups including zwitterionic (sulfobetaine and phosphocholine), neutral (amide and hydroxyl), cationic (amine), and anionic (sulfonic acid and silanol). Principal component analysis of the data showed that partitioning was a dominating mechanism for uncharged solutes in HILIC. However, correlations between functional groups and interactions were also observed, which confirms that the HILIC retention mechanism is partly contributed by adsorption mechanisms involving electrostatic interaction and multipoint hydrogen bonding. Phases with smaller pore diameters yielded longer retention of solutes, but did not significantly change the column selectivities. The particle diameter had no significant effect, neither on retention, nor on the selectivities. An increased water content in the eluent reduced the multipoint hydrogen bonding interactions, while an increased electrolyte concentration lowered the selectivities of the tested columns and made their interaction patterns more similar.  相似文献   

15.
The use of hydrophilic interaction chromatography (HILIC) with sub 2 μm particle columns for the analysis of drugs and related compounds of forensic interest is described. This technique uses a high organic/low aqueous buffered mobile phase with a polar stationary phase, and is excellent for the separation of many of the charged solutes that are found in forensic drug exhibits. In this study, HILIC is investigated for 11 solutes of forensic interest, including weak bases, weak acids, and a neutral solute. In addition, for columns containing either ethylene bridged hybrid particles with or without an amide bonded phase, the effects of acetonitrile concentration, buffer type, buffer concentration, linear velocity, and sample concentration were studied. Based on these studies, HILIC with sub 2 μm particle columns can offer highly efficient, selective, and rapid isocratic separations of drugs and related compounds of forensic interest, with excellent peak shapes and low back pressures. This is in contrast to reverse phase chromatography (RPLC), where gradient elution is usually required, which can result in extensive overlap between acidic, neutral, and basic solutes. In addition, since HILIC exhibits a much greater loading capacity than RPLC, it could be a preferred technique for drug profiling. Furthermore, because high organic content mobile phases are highly amenable to mass spectrometric detection, the use of HILIC with tandem mass spectrometric detection for the analysis of seized drugs is described.  相似文献   

16.
A novel imidazole-functionalized stationary phase for hydrophilic interaction chromatography (HILIC) was prepared via surface-initiated atom transfer radical polymerization (SI-ATRP). 1-Vinylimidazole as a monomer was polymerized on the surface of initiator-immobilized silica by SI-ATRP using CuCl and 2,2'-bipyridyl as a catalyst. The graft chain length and polymer grafting density were controlled by varying the ratio of monomer to initiator. The resulting materials were characterized by elemental analysis and thermogravimetric analysis. Then, high-performance liquid chromatography separation of eight nucleobases/nucleosides was performed on the imidazole-functionalized chromatographic column in HILIC mode. The effects of mobile phase composition, buffer pH, and column temperature on the separation of nucleobases/nucleosides were investigated, and the retention mechanisms were studied. Chromatographic parameters were calculated, and the results showed that surface adsorption through hydrogen bonding and electrostatic interaction dominated the retention behavior of the solutes in HILIC mode. Lastly, the stationary phase was successfully used to determine the nucleobases and nucleosides from Cordyceps militaris.  相似文献   

17.
A novel zwitterionic hydrophilic porous monolithic stationary phase was prepared based on the thermal‐initiated copolymerization of N,N‐dimethyl‐N‐(3‐methacryl‐amidopropyl)‐N‐(3‐(sulfopropyl)ammonium betaine and ethylene glycol dimethacrylate. A typical hydrophilic separation mechanism was observed at a highly organic mobile phase (ACN >60%) on this optimized zwitterionic hydrophilic interaction chromatography (HILIC) monolithic stationary phase. Good permeability, stability, and column efficiency were observed on the final monolithic column. Additionally, a weak electrostatic interaction for charged analytes was confirmed in analysis of six benzoic acids by studying the influence of mobile phase pH and salt concentration on their retention behaviors on the obtained zwitterionic HILIC monolithic column. The optimized zwitterionic HILIC monolith exhibited good selectivity for a range of polar test analytes.  相似文献   

18.
During recent decades, hydrophilic interaction liquid chromatography (HILIC) ahs been introduced to fractionate or purify especially polar solutes such as peptides and proteins while reversed‐phase liquid chromatography (RPLC) is also a common strategy. RPLC is also a common dimension in multidimensional chromatography. In this study, the potential of HILIC vs RPLC chromatography was compared for proteome mapping of human peripheral blood mononuclear cell extract. In HILIC a silica‐based stationary phase and for RPLC a C18 column were applied. Then separated proteins were eluted to an ion trap mass spectrometry system. Our results showed that the HILIC leads to more proteins being identified in comparison to RPLC. Among the total 181 identified proteins, 56 and 38 proteins were fractionated specifically by HILIC and RPLC, respectively. In order to demonstrate this, the physicochemical properties of identified proteins such as polarity and hydrophobicity were considered. This analysis indicated that polarity may play a major role in the HILIC separation of proteins vs RPLC. Using gene ontology enrichment analysis, it was also observed that differences in physicochemical properties conform to the cellular compartment and biological features. Finally, this study highlighted the potential of HILIC and the great orthogonality of RPLC in gel‐free proteomic studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
In proteomics, nanoflow multidimensional chromatography is now the gold standard for the separation of complex mixtures of peptides as generated by in-solution digestion of whole-cell lysates. Ideally, the different stationary phases used in multidimensional chromatography should provide orthogonal separation characteristics. For this reason, the combination of strong cation exchange chromatography (SCX) and reversed-phase (RP) chromatography is the most widely used combination for the separation of peptides. Here, we review the potential of hydrophilic interaction liquid chromatography (HILIC) as a separation tool in the multidimensional separation of peptides in proteomics applications. Recent work has revealed that HILIC may provide an excellent alternative to SCX, possessing several advantages in the area of separation power and targeted analysis of protein post-translational modifications. Figure Artistic impression of the HILIC separation mechanism  相似文献   

20.
The determination of catecholamines in urine was investigated using hydrophilic interaction chromatography (HILIC) as an alternative to the commonly used reversed-phase (RP) method. A number of different approaches were explored, including per-aqueous liquid chromatography (PALC), and HILIC using bare silica, bonded amide and zwitterionic phases. The bonded phases gave superior results in terms of both peak shape and selectivity. The mechanism of the HILIC separation was investigated particularly with respect to the contribution of ion exchange to retention. The electrochemical detection of catecholamines was studied and optimised in typical HILIC mobile phases that contain high concentrations of acetonitrile. HILIC offered a number of advantages over the conventional RP approach, giving good retention of the solutes without use of ion pair reagents, the absence of which also would facilitate detection by mass spectrometry. HILIC used in conjunction with solid phase extraction based on RP also gives orthogonal separation mechanisms in the cleanup and analysis steps. Furthermore, good recoveries from the cleanup stage were obtained, as high concentrations of acetonitrile can be used as eluting solvent that are fully compatible with HILIC, and lipophilic impurities are eluted close to the void volume of the HILIC column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号