首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
丙烯酸甲酯与醋酸乙烯酯的种子乳液聚合   总被引:15,自引:0,他引:15  
阚成友  刘温红 《高分子学报》1999,265(6):687-691
以过硫酸铵(APS) 为引发剂,合成了粒径分布较均匀的聚醋酸乙烯酯种子乳液(PVAc) ,然后以丙烯酸甲酯( MA) 为第二单体和以油溶性偶氮二异丁腈(AIBA) 为引发剂,分别进行不溶胀与溶胀条件下的无皂种子乳液聚合,并用透射电子显微镜(TEM) 表征了胶粒形态.表明在不溶胀条件下,胶粒形态随PVAc/ MA 重量比的不同而变化,当PVAc/ MA 为1/2 时,形成以PMA 为核,PVAc 为壳的胶粒.在溶胀条件下则得到类似互穿网络型乳胶粒.  相似文献   

2.
核/壳结构聚丙烯酸酯塑料增韧剂的制备与结构控制   总被引:8,自引:1,他引:8  
核/壳结构聚丙烯酸酯塑料增韧剂的制备与结构控制张会轩戴英杨海东*冯之榴(吉林工学院化工系长春130012)(中国科学院长春应用化学研究所130022)关键词聚丙烯酸酯,增韧剂,制备,种子乳液聚合1996-08-28收稿,1997-01-06修回国家自...  相似文献   

3.
阚成友 《高分子科学》2014,32(2):177-186
Three-layer core/shell latex particles with various shell crosslinking level and shell thickness were prepared by multistep emulsion polymerization, and the hollow latex particles with different morphologies were then obtained after alkali post-treatment. Influences of divinyl benzene(DVB) content and the core/shell mass ratio on emulsion polymerization and particle morphology were investigated. Results showed that with the increase of DVB content, the percentage of total amount of ―COOH on the particle surface and free in aqueous phase(PSFa) decreased, and the morphology of the post-treated particles underwent evolution from cracked, intact hollow to deficient swelling structure. Decreasing the core/shell mass ratio could not only make more carboxyl groups encapsulated by the shell, but also increase the shell resistance to the swelling of the core. The uniform hollow latex particles with intact morphology were obtained when the DVB content was 3.54 wt% and the core/shell mass ratio was 1/6.  相似文献   

4.
To improve the tribological performance of nano‐SiC particles filled epoxy composites, surface modification of the fillers is necessary. By means of soapless emulsion polymerization method, graft polymerization of glycidyl methacrylate (GMA) onto the surface of alkyl nano‐SiC was carried out, resulting in composite particles with SiC core and polymeric shell in which polyglycidyl methacrylate (PGMA) is chemically attached to the nanoparticles by the double bonds introduced during the pretreatment with a coupling agent. By analyzing the reaction mechanism, the emulsion polymerization loci were found to be situated at the SiC surface. Also, the factors affecting the grafting yielding of PGMA on the particles were investigated, including monomer concentration, initiator consumption, reaction temperature, reaction time, etc. Accordingly, an optimum grafting reaction condition was determined. It was shown that the grafted nanoparticles exhibit greatly improved dispersibility in good solvent for the grafting polymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3842–3852, 2004  相似文献   

5.
Polymeric particles have been prepared by emulsion polymerization of styrene in presence of poly(ethylene glycol) methacrylate (PEGMA). The influence of the functional monomer concentration on the particle size and particle size distribution was studied. Obtained particles show dramatic change of size with temperature. This thermal sensitivity can be influenced by the amount of the PEGMA grafted onto the particle surface as well as by the presence of crosslinking agents in the reaction mixture. It is assumed that particles have a core-shell structure and the brush-like PEGMA-rich shell layer induces the collapse at elevated temperatures.  相似文献   

6.
Fine magnetite nanoparticles, both electrostatically stabilized and nonstabilized, were synthesized in situ by precipitation of Fe(II) and Fe(III) salts in alkaline medium. Magnetic poly(glycidyl methacrylate) (PGMA) microspheres with core‐shell structure, where Fe3O4 is the magnetic core and PGMA is the shell, were obtained by dispersion polymerization initiated with 2,2′‐azobisisobutyronitrile (AIBN), 4,4′‐azobis(4‐cyanovaleric acid) (ACVA), or ammonium persulfate (APS) in ethanol containing poly(vinylpyrrolidone) or ethylcellulose stabilizer in the presence of iron oxide ferrofluid. The average microsphere size ranged from 100 nm to 2 μm. The effects of the nature of ferrofluid, polymerization temperature, monomer, initiator, and stabilizer concentration on the PGMA particle size and polydispersity were studied. The particles contained 2–24 wt % of iron. AIBN produced larger microspheres than APS or ACVA. Polymers encapsulating electrostatically stabilized iron oxide particles contained lower amounts of oxirane groups compared with those obtained with untreated ferrofluid. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5827–5837, 2004  相似文献   

7.
The organic/inorganic hybrid particles PSt/P(St-CPEM)(θ)-g-PDMAEMA/SiO(2) were prepared by catalytic hydrolysis and subsequent polycondensation of tetraethoxysilane in the poly[2-(N,N-dimethylamino)ethyl methacrylate] (PDMAEMA) layers grafted on the PSt/P(St-CPEM)(θ) core/shell heterocoagulates. The micron-sized PSt core and the submicron-sized P(St-CPEM) shell particles bearing ATRP initiating groups were synthesized by dispersion polymerization of styrene (St) and emulsifier-free emulsion polymerization of St with 2-chloropropionyloxyethyl methacrylate (CPEM), respectively. The raspberry-shaped PSt/P(St-CPEM)(θ) heterocoagulates with a controlled surface coverage (θ=0.51, 0.81) were prepared by hydrophobic coagulation between the core and the shell particles in an aqueous NaCl solution near the T(g) of P(St-CPEM). Surface modification of heterocoagulates was carried out by ATRP of DMAEMA from the shell particles adsorbed on the core particles. Silica deposition was performed by simply adding tetraethoxysilane to a water/methanol dispersion of PSt/P(St-CPEM)(θ)-g-PDMAEMA. The SEM and TGA revealed that the resulting PSt/P(St-CPEM)(θ)-g-PDMAEMA/SiO(2) composites maintain a raspberry-like morphology after deposition of silica onto the PDMAEMA layer grafted on heterocoagulates. The micron-sized, raspberry-shaped or the submicron-sized, hole-structured silica hollow particles were obtained selectively by thermal decomposition of the PSt/P(St-CPEM)(θ)-g-PDMAEMA/SiO(2). The oriented particle array was fabricated by dropping anisotropically perforated silica particles onto a glass substrate settled at the bottom of a bottle filled with chloroform.  相似文献   

8.
In comparison to the corresponding single-component counterparts, core/shell particles are widely used due to their better physical and chemical properties. The surface properties of core/shell particles evidently play an important role in the process of application. It is easy to deduce that surface properties mostly depend on the properties of the component in the shell. Therefore, desirable materials of shell are very significant for the study of composite materials, especially in core/shell field. It is well known that polysiloxane has excellent properties, such as the water repellency, high flexibility, low surface energy, and biocompatibility. Its application, however, is limited due to poor cohesiveness and poor film-forming properties. Recently, much endeavor has been made to overcome such flaws. It is found that polyacrylate is commonly considered for its good cohesiveness and excellent film-forming property. The combination of polysiloxane and polyacrylate has been shown to be important in the composite material field, especially as core/shell particles. Unfortunately, their hydrophobicity is considerably different and thus, the core/shell particles consisting of polyacrylate (PA)/polysiloxane (PSi) are hard to prepare by general seeded emulsion polymerization, and are also scarcely available in the literature. In this study, the new core/shell PA/PSi particles with poly(butyl methacrylate) (PA) as the core and poly(3-(methacryloxypropyl)-trimethoxysilane) (PSi) as the shell were prepared by dispersion polymerization under the kinetically controlled conditions. The characterization of the particles by TEM, DSC, particle size analyzer as well as static contact angle confirmed the formation of core/shell structure. The application of core/shell (PA/PSi) particles also has been considered and discussed here.TEM micrographs of core/shell (PA/PSi) particles.  相似文献   

9.
The synthesis of functionalized magnetic polymer microspheres was described by a process involving (1) preparation of the monodisperse magnetic seeds according to a two-step procedure including the preparation of bilayer-oleic acid-coated Fe3O4 nanoparticles followed by soap-free emulsion polymerization with methyl methacrylate (MMA) and divinyl benzene (a cross-linking agent, DVB); (2) seeded emulsion polymerization proceeding under the continuous addition of glycidyl methacrylate (GMA) monomers in the presence of the magnetic PMMA seeds; and (3) chemical modification of the PGMA shells with ethylenediamine (EDA) to yield amino groups. As such, the magnetic poly(MMA-DVB-GMA) microspheres were prepared possessing monodispersity, uniform magnetic properties, and abundant surface amino groups. Then, the dendritic poly(amidoamine) (PAMAM) shells were coated on the magnetic particles on the basis of the Michael addition of methyl acrylate and the amidation of the resulting ester with a large excess of EDA, which could achieve generational growth under such uniform stepwise reactions. For improving the luminescence properties of the composite particles, fluorescein isothiocyanate, which is a popular organic dye, was reacted with the terminal -NH2 groups from the dendritic PAMAM shells, resulting in the formation of multifunctional microspheres with excellent photoluminescence, superparamagnetic, and pH-sensitive properties. In this case, it can be expected that an extension of the functionalization of these microspheres is to immobilize other target molecules onto the PAMAM shells to introduce other desired functions for potential chemical and biological applications.  相似文献   

10.
A novel biotinylated and enzyme‐immobilized nanobio device was prepared with heterobifunctional composite latex particles. Hemispherical poly(glycidyl methacrylate‐co‐divinylbenzene)/polystyrene [P(GMA‐DVB)/PSt] particles with epoxy and hydroxyl groups were prepared by soap‐free seeded emulsion polymerization with P(GMA‐DVB) seed particles. Hydroxyl groups were introduced to PSt chain terminals in the seeded stage by adding 2‐mercaptoethanol as a chain‐transfer agent. To obtain the desired hemispherical structure particles, we studied the effects of the preswelling process, the type and amount of solvents added in the seeded polymerization step, the weight ratio of the secondary monomer (styrene) to the seed particle (M/P), and the type of initiators. Under suitable conditions, heterobifunctional P(GMA‐DVB)/PSt was obtained, which was confirmed by observing the binding of streptavidin–colloidal gold with transmission electron microscopy (TEM). To obtain biotinylated and enzyme‐immobilized particles, 5‐(N‐succinimidyloxycarbonyl)pentyl D‐biotinamide was first reacted with the hydroxyl group on the PSt domain of the particle. Pyruvate kinase (PK) was then directly immobilized to the biotinylated particles through a reaction with the epoxy group in the PGMA domain. The monolayer of PK on the latex particle surface was considered to be formed by covalent binding. The activity of immobilized PK was almost conserved, even after being stored at 4 °C for 48 days. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 562–574, 2005  相似文献   

11.
Polystyrene core microspheres of narrow-size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. Polystyrene/polychloromethylstyrene and polystyrene/poly(chloromethylstyrene-divinylbenzene) core-shell microspheres of narrow-size distribution were prepared by seeded emulsion polymerization of chloromethylstyrene or chloromethylstyrene and divinylbenzene in the presence of the polystyrene core microspheres at 71 °C. Core-shell particles with different properties (size, surface morphology, and composition) have been prepared by changing various parameters belonging to the emulsion polymerization process, e.g., volume of the chloromethylstyrene and the volume ratio of chloromethylstyrene to divinylbenzene. Dissolution of the polystyrene core of the polystyrene/poly(chloromethylstyrene-divinylbenzene) core-shell particles resulted in the formation of crosslinked hollow polychloromethylstyrene microspheres, broken crosslinked polychloromethylstyrene shells, or particles containing voids, depending on the composition of the polystyrene/poly(chloromethylstyrene-divinylbenzene) particles.  相似文献   

12.
 Recently, the authors reported that micron-sized monodispersed cross-linked polymer particles having a single hollow in the inside were produced by seeded polymerization for the dispersion of (toluene/divinylbenzene)-swollen polystyrene (PS) particles prepared utilizing the dynamic swelling method which the authors had proposed. In this article, the particles at various conversions of the seeded polymerization were observed with an optical microscope in detail. From the obtained results, the formation mechanism of the hollow structure is suggested as follows. As seeded polymerization proceeds, poly-divinylbenzene (PDVB) molecules precipitated in the swollen particle are trapped near the interface and gradually pile at the inner surface, which results in a cross-linked PDVB shell. PS which dissolves in the swollen particles is repelled gradually to the inside. After the completion of the polymerization, toluene in the hollow evaporates by drying, and PS clings to the inner wall of the shell uniformly. Received: 14 February 1997 Accepted: 16 April 1997  相似文献   

13.
Epoxy‐functionalized polystyrene/silica core–shell composite nanoparticles were prepared by the postaddition of glycidyl methacrylate (GMA) via emulsion polymerization. The outermost shell of obtained multilayered core–shell particles was made up of poly(glycidyl methacrylate) (PGMA). A semicontinuous process involving the dropwise addition of GMA was used to avoid demulsification of the emulsion system. The amount of grafted PGMA was quantified by Fourier transform infrared spectroscopy and was altered in a wide range (1–50 wt % to styrene). The binding efficiency was usually high (ca. 90%), indicating strong adhesion between the silica core and the polymer shell. There were approximately four or five original silica beads, which formed a cluster, per composite of nanoparticles whose size was about 60–70 nm. Other main factors of polymerization conditions including the amounts of sodium dodecyl sulfonate and silica are also discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2253–2262, 2004  相似文献   

14.
In order to obtain functional polymer latex particles with clean surface and with surface carboxyl groups, P(MMA-EA) seed particles with the diameter of 335 nm were first synthesized via soap-free batch emulsion polymerization of methyl methacrylate (MMA) and ethyl acrylate (EA), and then the seeded emulsion copolymerization of MMA, EA and MAA (methacrylic acid) onto the seed particles were performed in the absence of emulsifier. Influences of ingredients and conditions on polymerization, latex particle size (Dp) and its distribution were investigated. Results showed that most of the monomers polymerized onto the seed latex particles in the second step of polymerization by using drop-wise addition method, and Dp increased from 483 nm to 829 nm with the mass ratio of core/shell monomers [C]/[S] decreased from 1:2 to 1:15. It was found that Dp decreased with the increase of MAA and initiator amounts, and the size of the latex particles became uniform with the decrease of MAA amount and with the increase of [C]/[S] value.  相似文献   

15.
交联核壳结构PBA/PS和PBA/PMMA纳米微球的制备与应用   总被引:1,自引:0,他引:1  
考察了聚丙烯酸丁酯/聚苯乙烯(PBA/PS)以及聚丙烯酸丁酯/聚甲基丙烯酸甲酯(PBA/PMMA)交联核壳结构纳米高分子微球的制备方法,并对其在尼龙复合材料中的应用进行了初步研究.结果表明,通过交联剂的引入使粒子核层和壳层内部均形成了高度交联的结构,可以限制亲水性较小的聚苯乙烯(PS)壳层向粒子内部迁移的趋势;制备出的微球平均粒径为40~50 nm,粒径分布很窄.采用饥饿态加料方式加入第二单体不仅可以使微球具有较高的产率和凝胶率,而且可以使其具有更理想的核壳结构和更窄的粒径分布.此外,将合成出的PBA/PMMA核壳粒子对尼龙6基体进行复合的结果表明,由于该微球表面与尼龙6基体之间具有较强的界面相互作用且微球具有较大的形变能力,可以在基体中形成良好的分散,在保持材料强度的同时有效地提高了其刚性和韧性.  相似文献   

16.
PSt种子与“花瓣”形PSt/PAN复合颗粒的制备   总被引:4,自引:0,他引:4  
以过硫酸钾为引发剂,在乙醇/水的混合介质中使苯乙烯进行无皂乳液聚合,得到了单分散亚微米级聚苯乙烯(PSt)微球.用扫描电子显微镜研究了引发剂浓度、单体浓度、反应温度和溶剂组成对PSt微球粒径的影响.结果表明,改变上述条件能明显影响其粒径.以所得单分散聚苯乙烯微球为种子,在丙烯酸单封端聚乙二醇大分子单体存在的条件下,使丙烯腈和少量苯乙烯进行新的无皂种子乳液聚合,在合适的条件下制得到了“花瓣”形的聚合物复合颗粒,为深入探讨这类特殊形态聚合物颗粒的形成机理提供了新的佐证.  相似文献   

17.
In this research, submicron and carboxyl‐functionalized magnetic latex particles were elaborated by using seeded emulsion polymerization technique in presence of oil‐in‐water (o/w) magnetic emulsion as seed. The polymerization conditions were optimized in order to get well‐defined latex particles with magnetic core and polymer shell bearing carboxylic (–COOH) functionality. Starting from (o/w) magnetic emulsion as seed, synthesis process was performed by copolymerization of styrene (St) monomer with the cross‐linker divinylbenzene (DVB) in presence of 4,4′‐azobis(4‐cyanopentanoic acid) (ACPA) as a carboxyl‐bearing initiator. The prepared magnetic latex particles were first characterized in terms of particle size, chemical composition, morphology, magnetic properties, magnetic content, and colloidal stability using various techniques, e.g. particle size analyzer using dynamic light scattering (DLS) technique, Fourier transform infrared, transmission electron microscopy, vibrating sample magnetometer, thermogravimetric analysis, and zeta potential measurements as a function of pH of the dispersion media, respectively. The prepared magnetic latex particles were then used as second seed for further functionalization with methacrylic acid (MAA) in order to enhance carboxylic groups on the magnetic particle's surface. The results showed that final magnetic latex particles possessed spherical morphology with core‐shell structure and enriched carboxylic acid functionality. More importantly, they exhibited superparamagnetism with high magnetic content (58.42 wt%) and high colloidal stability, which considered as the main requirements for their application in the biomedical diagnostic domains. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
聚硅氧烷/丙烯酸酯核/壳复合胶乳的粒径分布与成核机理   总被引:12,自引:0,他引:12  
通过种子乳液法合成出具有高有机硅含量核 壳结构的聚硅氧烷 丙烯酸酯复合粒子 .研究了聚合方法、乳化剂浓度、引发剂浓度、单体滴加速度等工艺条件对复合乳液粒径尺寸、分布与形态的影响 ,并对复合乳液的成核机理进行了探讨 .研究表明 ,乳化剂浓度对乳液粒子的粒径分布和形态、结构有显著影响 ,引发剂浓度增加将使粒子粒径减小 ;相对一次投料法 ,种子乳液法生成的粒子分布窄 ,具有明显核壳结构 ,通过壳层单体滴加速度可以控制粒子的粒径尺寸和分布 ;而壳层丙烯酸酯聚合物主要是在聚硅氧烷种子表面的“过渡层”聚合、富集而成 .  相似文献   

19.
An investigation of the radial structure of composite latex particles by small-angle x-ray scattering (SAXS) is given. Measurements at different contrasts were done by addition of sucrose to the dispersion medium water. The latex particles investigated here consist of a poly(styrene) core and a shell of poly(methylmethacrylate) and were prepared by seeded emulsion polymerization. Since the electron density of both polymers can be easily matched by concentrated sucrose solution, a full analysis of the radial electron density by contrast variation can be given. Depending on the mode of monomer addition during the second polymerization step a very sharp or a diffuse interface between the two incompatible polymers may result.Respectfully dedicated to Prof. E. W. Fischer on the occasion of his 65th birthday  相似文献   

20.
种子乳液聚合的研究进展   总被引:5,自引:0,他引:5  
种子乳液聚合法因具有乳液稳定性更好、粒径分布窄、易控制等优点,在乳胶粒子设计及制备各种功能性胶乳方面具有重要作用,是制备高固含量乳液及具有核壳结构乳液的最常见最简便的方法.本文综述了近年来种子乳液的聚合工艺、聚合机理, 包括接枝机理、互穿聚合物网络机理、聚合物沉积机理、种子表面聚合机理和离子键合机理等,以及种子乳液聚合在乳胶粒子设计方面的应用研究进展,并讨论了影响种子乳液聚合的各种因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号