共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure and energy of the 1:1 complexes formed between dicyanoacetylene and water (D2O) in argon matrix are investigated using FTIR spectroscopy and ab initio calculations at the B3LYP/6-31g** level of theory. Two types of 1:1 complexes are observed. The first one corresponds to the NH structure characterized by a hydrogen bond between H2O and one of the nitrogen of dicyanoacetylene. The second corresponds to the CO form which involves a van der Waals interaction between the Cβ of dicyanoacetylene and the oxygen of water.
These complexes were irradiated with an Hg–Xe lamp at 10 K. Two products were observed by FTIR spectroscopy. The first one corresponds to the Isonitrile:H2O complexes formation. The second one, resulting from the reaction of water on the photolyzed dicyanoacetylene, corresponds to the cyanoketene:HCN complex formation. 相似文献
2.
E. D. Jemmis K. T. Giju K. Sundararajan K. Sankaran V. Vidya K. S. Viswanathan J. Leszczynski 《Journal of Molecular Structure》1999,510(1-3):59-68
The details of weak C–Hπ interactions that control several inter and intramolecular structures have been studied experimentally and theoretically for the 1:1 C2H2–CHCl3 adduct. The adduct was generated by depositing acetylene and chloroform in an argon matrix and a 1:1 complex of these species was identified using infrared spectroscopy. Formation of the adduct was evidenced by shifts in the vibrational frequencies compared to C2H2 and CHCl3 species. The molecular structure, vibrational frequencies and stabilization energies of the complex were predicted at the MP2/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels. Both the computational and experimental data indicate that the C2H2–CHCl3 complex has a weak hydrogen bond involving a C–Hπ interaction, where the C2H2 acts as a proton acceptor and the CHCl3 as the proton donor. In addition, there also appears to be a secondary interaction between one of the chlorine atoms of CHCl3 and a hydrogen in C2H2. The combination of the C–Hπ interaction and the secondary ClH interaction determines the structure and the energetics of the C2H2–CHCl3 complex. In addition to the vibrational assignments for the C2H2–CHCl3 complex we have also observed and assigned features owing to the proton accepting C2H2 submolecule in the acetylene dimer. 相似文献
3.
4.
The matrix isolation technique, combined with infrared spectroscopy and theoretical calculations, has been employed to investigate the thermal and photochemical reactions of dimethylsulfoxide (DMSO) with CrCl2O2 and OVCl3. Twin jet codeposition leads to formation and isolation of a photochemically unstable 1:1 complex. The photoproduct in the twin jet DMSO + CrCl2O2 experiments is identified as dimethyl sulfone, (CH3)2SO2, interacting with the Cl2CrO fragment, while in the analogous OVCl3 reaction, the photoproduct bands were too weak to allow product identification. Merged jet codeposition led to rapid gas phase reaction, and in the case of DMSO + CrCl2O2, dimethyl sulfone is formed in high yield. This marks the first demonstration of a gas phase thermal oxygen atom transfer from CrCl2O2 to an organic substrate. For the reaction of DMSO with OVCl3, no volatile products are deposited in the matrix and dimethyl sulfone is not a product. These results support differing pathways for the reactions of CrCl2O2 and OVCl3, a conclusion that is supported by density functional calculations. 相似文献
5.
6.
Wan-Lu Li Teng-Teng Chen Zhi-Yu Jiang Wei-Jia Chen Han-Shi Hu Lai-Sheng Wang Jun Li 《化学物理学报(中文版)》2019,32(2):241-247
Since the discovery of the first drum-like CoB16- complex, metal-doped drum-like boron nanotubular structures have been investigated with various metal dopants and different tubular size, forming a new class of novel nanostructures. The CoB16- cluster was found to be composed of a central Co atom coordinated by two fused B8 rings in a tubular structure, representing the potential embryo of metal-filled boron nanotubes and providing opportunities to design one-dimensional metal-boron nanostructures. Here we report improved photoelectron spectroscopy and a more in-depth electronic structure analysis of CoB16-, providing further insight into the chemical bonding and stability of the drum-like doped boron tubular structures. Most interestingly, we find that the central Co atom has an unusually low oxidation state of ?1 and neutral CoB16 can be viewed as a charge transfer complex (Co-@BB16+), suggesting both covalent and electrostatic interactions between the dopant and the boron drum. 相似文献
7.
Javier F. Sanz Jaime Oviedo Antonio Mrquez Jos Antonio Odriozola Mario Montes 《Angewandte Chemie (International ed. in English)》1999,38(4):506-509
A new band at 1640 cm −1 is revealed by diffuse reflectance FT‐IR spectroscopy of acetone adsorbed on a MgO surface (shown schematically). On the grounds of ab initio quantum‐mechanical calculations, this band is assigned to an adsorbed enolate species. This evidence proves the catalytic role of the metal oxide surface in the condensation reaction mechanism. 相似文献
8.
The vibrational frequencies of the N–H stretching modes of aniline after forming a strong doubly H-bonded complex with tetrahydrofuran (THF) are measured with infrared depletion spectroscopy that uses cluster-size-selective resonance-enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry. Two strong infrared absorption features observed at 3355 and 3488 cm−1 are assigned to the symmetric and antisymmetric N–H stretching vibrations of the 1:2 aniline–THF complex, respectively. The red-shifts of the N–H stretching vibrations of aniline agree with the ab initio calculated (MP2/6-31G**) aniline-(THF)2 structure in which both aniline N–H bonds interact with the oxygen atom of THF through two hydrogen bonds. The calculated binding energy is found to be 29.6 kJ mol−1 after corrections for basis set superposition error (BSSE) and zero-point energy. The calculated structure revealed that the angle between the N–H bonds in the NH2 group increased to 112.5° in the aniline–(THF)2 complex from that of 109.8° in the aniline. The electronic 0–0 band origin for the S1 ← S0 transition is observed at 32,900 cm−1 in the aniline–(THF)2 complex, giving a red-shift of 1129 cm−1 from that of the aniline molecule. 相似文献
9.
Delphine Gout 《Journal of solid state chemistry》2003,174(2):471-481
The Al-rich portion of the ternary Ce-Ni-Al has been investigated and a new ternary phase of composition Ce4Ni6Al23 has been found. This compound crystallizes in the monoclinic space group C2/m with the cell parameters a=16.042(8), b=4.140(4), c=18.380(8) Å and β=113.24(5)°. The structure has been determined by single crystal X-ray diffraction. The local environment of Ni and Ce is close to what is observed in the CeNi2Al5 and CeNiAl4 structures. Band structure calculations, using the tight-binding-linear muffin-tin orbital-atomic-spheres approximation (TB-LMTO-ASA) method, have been performed to understand the electronic structure of Ce4Ni6Al23 and the results are discussed in connection with those two other Ce-Ni-Al intermetallic compounds, which possess heavy-fermion behavior. Magnetic and heat capacity measurements have also been measured to analyze the low-temperature magnetic behavior of this new compound. 相似文献
10.
The X-ray crystal structures of (N,N′-bis-(o-amidobenzilidene)-1,3-diaminopropane)nickel (Niambpr), (N,N′-bis-(o-amidobenzilidene)-1,4-diaminobutane)nickel (Niambut), (N,N′-bis-(o-thiobenzilidene)-1,4-diaminobutane)nickel(II) (Nitsalbut), bis-acetonitrile-(N,N′-bis-(o-aminobenzyl)-1,2-diaminoethane) nickel(II) tetrafluoroborate [Ni(H4amben)(MeCN)2] [BF4]2, bis-O-acetato-(N,N′-bis-(o-aminobenzyl)-1,2-diaminoethane) nickel(II) [Ni(H4amben)(OAc)2 · H2O] and bis-O-acetato-(N,N′-bis-(o-aminobenzyl)-1,3-diaminopropane) nickel(II) [Ni(H4ambpr)(OAc)2] are presented. These structures complete the structural characterisation of the simple unsubstituted Schiff’s base complexes with N4 and N2S2 donor sets and allow us to assess the effects of donor groups and polymethylene chain length on the coordination geometries of nickel(II). The hydrogenated N4 complexes offer an insight into the effects of increased flexibility and character of the internal nitrogen donors. Unlike the parent N4 imine species the hydrogenated amine species do not deprotonate at the peripheral nitrogen donors and do not seem to be restricted to the meridial plane of the nickel. 相似文献
11.
Paola Antoniotti Stefano Borocci Nicoletta Bronzolino Felice Grandinetti 《Chemphyschem》2004,5(9):1345-1351
The structure and stability of various HCN2+ isomeric structures have been investigated at the complete active space SCF (CASSCF) and multireference-configuration interaction [MR-Cl-SD(Q)] levels of theory with the 6-31G(d) and 6-311G(d,p) basis sets. The investigated species include the singlet (S) and triplet (T) open-chain H-N-C-N+ ions 1S, 1S', and 1T, the open-chain H-C-N-N+ ions 2S, 2S', and 2T, the HC-N2+ cyclic structures 3S and 3T, and the HN-CN+ cyclic structures 4S and 4T. All these species have been identified as true energy minima on the CASSCF(8,7)/6-31G(d) potential energy surface, and their optimised geometries, refined at the CASSCF(8,8)/6-31G(d) level of theory, have been used to perform single point calculations at the [MR-Cl-SD(Q]/6-311G(d,p) computational level. The most stable structure was the H-N-C-N+ ion 1T, whose absolute enthalpy of formation at 298.15 K has been estimated as 333.9 +/- 2 kcalmol(-1) using the Gaussian-3 (G3) procedure. The two species closest in energy to 1T are the triplet H-C-N-N+ ion 2T and the singlet diazirinyl cation 3S, whose G3 enthalpies of formation at 298.15 K are 343.5 +/- 2 and 340.6 +/- 2 kcalmol(-1), respectively. Finally, we have discussed the implications of our calculations for the detailed structure of the HCN2+ ions formed in the reaction between N3+ and HCN, experimentally observed by flowing after-glow-selected ion flow/drift tube mass spectrometry and possibly occurring in Titan's atmosphere. 相似文献
12.
13.
14.
Differential scanning calorimetry of [Rb0.44(NH4)0.56]2HgCl4 · H2O material showed three anomalies at 340, 355 and 424 K, respectively. The room temperature phase has space group Pcma (a=8.433(1) Å, b=9.1817(9) Å and c=11.954(1)). Phase II (T=350 K) is disordered and exhibits orthorhombic symmetry (a=8.456(13), b=9.202(9) and c=12.011(10) Å). Hydrogen bonding, the nature and the degree of structure (dis)order and the mechanisms of the transitions are discussed. The dielectric constant ′ at different frequencies and temperature revealed a phase transition at T=340 K related to NH4+ reorientation and H+ diffusion, and a characteristic increase above 355 K, which might be due to loss of water of crystallization. Transport properties in this compound appear to be due to an Rb+/NH4+ and H+ ions hopping mechanism. 相似文献
15.
16.
R. Benassi C. Bertarini L. Hilfert G. Kempter E. Kleinpeter J. Spindler F. Taddei S. Thomas 《Journal of Molecular Structure》2000,520(1-3):273-294
The structure of a number of 2-exo-methylene substituted quinazolines and benzodiazepines, respectively, 1, 3a,b, 4 (X=–CN,–COOEt) and their 2-cyanoimino substituted analogues 2, 3c,d (X=–CN,–SO2C6H4–Me(p) was completely assigned by the whole arsenal of 1D and 2D NMR spectroscopic methods. The E/Z isomerism at the exo-cyclic double bond was determined by both NMR spectroscopy and confirmed by ab initio quantum chemical calculations; the Z isomer is the preferred one, its amount proved dependent on steric hindrance. Due to the push–pull effect in this part of the molecules the restricted rotation about the partial C2,C11 and C2,N11 double bonds, could also be studied and the barrier to rotation measured by dynamic NMR spectroscopy. The free energies of activation of this dynamic process proved very similar along the compounds studied but being dependent on the polarity of the solvent. Quantum chemical calculations at the ab initio level were employed to prove the stereochemistry at the exo-cyclic partial double bonds of 1–4, to calculate the barriers to rotation but also to discuss in detail both the ground and the transition state of the latter dynamic process in order to better understand electronic, inter- and intramolecular effects on the barrier to rotation which could be determined experimentally. In the cyanoimino substituted compounds 2, 3c,d, the MO ab initio calculations evidence the isomer interconversion to be better described by the internal rotation process than by the lateral shift mechanism. 相似文献
17.
Elucidating the Thermal Decomposition of Dimethyl Methylphosphonate by Vacuum Ultraviolet (VUV) Photoionization: Pathways to the PO Radical,a Key Species in Flame‐Retardant Mechanisms 下载免费PDF全文
Shuyu Liang Dr. Patrick Hemberger Dr. N. Matthias Neisius Dr. Andras Bodi Prof. Dr. Hansjörg Grützmacher Prof. Dr. Joelle Levalois‐Grützmacher Dr. Sabyasachi Gaan 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(3):1073-1080
The production of phosphoryl species (PO, PO2, HOPO) is believed to be of great importance for efficient flame‐retardant action in the gas phase. We present a detailed investigation of the thermal decomposition of dimethyl methylphosphonate (DMMP) probed by vacuum ultraviolet (VUV) synchrotron radiation and imaging photoelectron photoion coincidence (iPEPICO) spectroscopy. This technique provides a snapshot of the thermolysis process and direct evidence of how the reactive phosphoryl species are generated during heat exposure. One of the key findings of this work is that only PO is formed in high concentration upon DMMP decomposition, whereas PO2 is absent. It can be concluded that the formation of PO2 needs an oxidative environment, which is typically the case in a real flame. Based on the identification of products such as methanol, formaldehyde, and PO, as well as the intermediates O?P?CH3, H2C?P?OH, and H2C?P(?O)H, supported by quantum chemical calculations, we were able to describe the predominant pathways that lead to active phosphoryl species during the thermal decomposition of DMMP. 相似文献
18.
19.
Chen Wang Yao Fu Prof. Qing‐Xiang Guo Prof. Lei Liu Prof. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(8):2586-2598
Quantitative nucleophilicity scales are fundamental to organic chemistry and are usually constructed on the basis of Mayr’s equation [log k=s(N+E)] by using benzhydrylium ions as reference electrophiles. Here an ab initio protocol was developed for the first time to predict the nucleophilicity parameters N of various π nucleophiles in CH2Cl2 through transition‐state calculations. The optimized theoretical model (BH&HLYP/6‐311++G(3df,2p)//B3LYP/6‐311+G(d,p)/PCM/UAHF) could predict the N values of structurally unrelated π nucleophiles within a precision of ca. 1.14 units and therefore may find applications for the prediction of nucleophilicity of compounds that are not readily amenable to experimental characterization. The success in predicting N parameters from first principles also allowed us to analyze in depth the electrostatic, steric, and solvation energies involved in electrophile–nucleophile reactions. We found that solvation does not play an important role in the validity of Mayr’s equation. On the other hand, the correlations of the E, N, and log k values with the energies of the frontier molecular orbitals indicated that electrostatic/charge‐transfer interactions play vital roles in Mayr’s equation. Surprising correlations observed between the electrophile–nucleophile C? C distances in the transition state, the activation energy barriers, and the E and N parameters indicate the importance of steric interactions in Mayr’s equation. A method is then proposed to separate the attraction and repulsion energies in the nucleophile–electrophile interaction. It was found that the attraction energy correlated with N+E, whereas the repulsion energy correlated to the s parameter. 相似文献
20.
Frontispiece: NMR Fingerprints of the Drug‐like Natural‐Product Space Identify Iotrochotazine A: A Chemical Probe to Study Parkinson’s Disease 下载免费PDF全文
Dr. Tanja Grkovic Dr. Rebecca H. Pouwer Marie‐Laure Vial Luca Gambini Alba Noël Dr. John N. A. Hooper Dr. Stephen A. Wood Dr. George D. Mellick Prof. Dr. Ronald J. Quinn 《Angewandte Chemie (International ed. in English)》2014,53(24)