首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using DFT calculations, two of the most probable structures (A, B) of the tetraphenyl p-tert-butylcalix[4]arene tetraketone·H3O+ cationic complex species were derived. The hydroxonium ion H3O+, placed in the coordination cavity formed by the calix[4]arene lower-rim groups, is bound by strong hydrogen bonds to the phenoxy oxygen atoms of the calix[4]arene ligand (structures A, B) and also to one carbonyl oxygen (structure B). Correspondence: Emanuel Makrlík, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic.  相似文献   

2.

Abstract  

Using 1H NMR spectroscopy together with density functional theoretical calculations, it is shown that electroneutral p-tert-butylcalix[4]arenetetraacetic acid forms an equimolar complex with a proton in the form of the H3O+ ion in nitrobenzene-d 5. Protons were offered by hydrogen bis(1,2-dicarbollyl)cobaltate and converted to hydroxonium ions by traces of water. In the resulting complex, the H3O+ cation is bound by strong hydrogen bonds to two phenoxy oxygen atoms of the parent calix[4]arene ligand and to one carbonyl oxygen of the corresponding COOH group of this ligand.  相似文献   

3.
Both NMR spectra in nitrobenzene-d 5 and high-precision quantum mechanical DFT calculations proved that tetramethyl p-tert-butylcalix[4]arene tetraketone binds hydroxonium cation H3O+ quite strongly to form an equimolar complex. Three different structures of the resulting complex species were indicated by the NMR spectra and the DFT calculations.  相似文献   

4.

The syntheses and structures of uranyl complexes of p-t-Bu-calix[6]arene (calix[6]H6) and p-t-Bu-calix[9]arene (calix[9]H9) are reported, further developing the role of calixarenes as 'cluster keepers'. The calix[6]arene complex, formulated as [(HO){UO2(calix[6]H4)(dmso)}3H], is trinuclear and linked symmetrically by the hydroxyl O atom. The calix[9]arene complex is binuclear, with a carbonate atom bridging between the two uranyl cations to give the complex, (HNEt3)3[(OCO2)(UO2)3(calix[9]H4)].  相似文献   

5.
By using DFT calculations, the most probable structure of the p-tert-butylcalix[4]arenetetrakis(N,N-diethylacetamide) · H3O+ complex species was derived. In this complex, the hydroxonium ion H3O+ is predominantly bound by strong hydrogen bonds to three phenoxy oxygens of the ligand and partly to the remaining phenoxy oxygen atom by two somewhat weaker hydrogen bonds. Besides, the H3O+ cation is also bound to two carbonyl oxygens of the mentioned ligand by further two weaker hydrogen bonds.  相似文献   

6.
We report here for the first time a cocrystal of the so‐called neutral calix[4]tube, which is two tail‐to‐tail‐arranged and partially deprotonated tetrakis(carboxymethoxy)calix[4]arenes, including three sodium ions, with 2‐(thiophen‐2‐yl)‐1,3‐benzothiazole, namely trisodium bis(carboxymethoxy)bis(carboxylatomethoxy)calix[4]arene tris(carboxymethoxy)(carboxylatomethoxy)calix[4]arene–2‐(thiophen‐2‐yl)‐1,3‐benzothiazole–dimethyl sulfoxide–water (1/1/2/2), 3Na+·C36H30O122?·C36H31O12?·C11H7NS2·2C2H6OS·2H2O, which provides a new approach into the host–guest chemistry of inclusion complexes. Three packing polymorphs of the same benzothiazole with high Z′ (one with Z′ = 8 and two with Z′ = 4) were also discovered in the course of our desired cocrystallization. The inspection of these polymorphs and a previously known polymorph with Z′ = 2 revealed that Z′ increases as the strength of intermolecular contacts decreases. Also, these results expand the frontier of invoking calixarenes as a host for nonsolvent small molecules, besides providing knowledge on the rare formation of high‐Z′ packing polymorphs of simple molecules, such as the target benzothiazole.  相似文献   

7.
Theoretical studies of 1,3‐alternate‐25,27‐bis(1‐methoxyethyl)calix[4]arene‐azacrown‐5 ( L1 ), 1,3‐alternate‐25,27‐bis(1‐methoxyethyl)calix[4]arene‐N‐phenyl‐azacrown‐5 ( L2 ), and the corresponding complexes M+/ L of L1 and L2 with the alkali‐metal cations: Na+, K+, and Rb+ have been performed using density functional theory (DFT) at B3LYP/6‐31G* level. The optimized geometric structures obtained from DFT calculations are used to perform natural bond orbital (NBO) analysis. The two main types of driving force metal–ligand and cation–π interactions are investigated. The results indicate that intermolecular electrostatic interactions are dominant and the electron‐donating oxygen offer lone pair electrons to the contacting RY* (1‐center Rydberg) or LP* (1‐center valence antibond lone pair) orbitals of M+ (Na+, K+, and Rb+). What's more, the cation–π interactions between the metal ion and π‐orbitals of the two rotated benzene rings play a minor role. For all the structures, the most pronounced changes in geometric parameters upon interaction are observed in the calix[4]arene molecule. In addition, an extra pendant phenyl group attached to nitrogen can promote metal complexation by 3D encapsulation greatly. In addition, the enthalpies of complexation reaction and hydrated cation exchange reaction had been studied by the calculated thermodynamic data. The calculated results of hydrated cation exchange reaction are in a good agreement with the experimental data for the complexes. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

8.
The structures of three syn‐1,3‐dialkoxy­thia­calix[4]arenes with unusual conformations in the solid state are reported. The pinched cone conformation of syn‐22,42‐dihydroxy‐12,32‐bis­(prop‐2‐enyl­oxy)thia­calix[4]arene, C30H24O4S4, (3a), is stabilized by two intra­molecular hydrogen bonds, remarkably formed from both OH groups to the same ether O atom. In syn‐22,42‐dihydroxy‐15,25,35,45‐tetra­nitro‐12,32‐bis­(prop‐2‐enyl­oxy)thia­calix[4]arene acetone disolvate, C30H20N4O12S4·2C3H6O, (3b1), the mol­ecule is found in the 1,3‐alternate conformation. The crystallographic C2 symmetry is due to a twofold rotation axis running through the centre of the calixarene ring. The hydroxy groups cannot form intra­molecular hydrogen bonds as in (3a) and both are bonded to an acetone solvent mol­ecule. The mol­ecule of the pseudo‐polymorph of (3b1) in which the same compound crystallized without any solvent, viz. (3b2), is located on a crystallographic mirror plane. Only one of the two hydroxy groups forms a hydrogen bond, and this is with a nitro group of a neighbouring mol­ecule as acceptor. Mol­ecular mechanics calculations for syn‐1,3‐diethers suggest a preference of the 1,3‐alternate over the usual cone conformation for thia­calix[4]arene versus calix[4]arene and for para‐nitro versus para‐H derivatives.  相似文献   

9.
25, 25′, 27, 27′‐Bis(1,3‐dioxypropane)‐bis(5, 11, 17, 23‐tetra‐tert‐butylcalix[4]arene‐26,28‐diol) (4) and 25, 25′, 27, 27′‐bis(1, 4‐dioxybutane)‐bis (5, 11, 17, 23‐tetra‐tert‐butylcalix‐[4]arene‐26, 28‐diol) (5) were synthesized by the reaction of p‐tert‐butylcalix[4]arene (1) with preorganized 25, 27‐bis(3‐bromoproxyl)calix[4]arene‐26, 27‐diol (2) and 25, 27‐bis(3‐bromobutoxyl)calix[4]arene‐26, 27‐diol (3) in the presence of K2CO3 and KI. Compounds 4 and 5 were characterized with X‐ray analysis and the selectivity of 4 and 5 toward K+ over other alkali metal ions, alkaline metal ions as well as NH4+ were investigated with an ion‐selective electrode.  相似文献   

10.
Yu Liu 《Tetrahedron》2003,59(40):7967-7972
A series of novel double-armed calix[4]arene derivatives, i.e. 5,11,17,23-tetra-tert-butyl -25,27-bis[2-[(2-hydroxy-5-(4-nitroazo)benzylidene)amino]ethoxy]-26,28-dihydroxy-calix[4]-arene (4), 5,11,17,23-tetra-tert-butyl-25,27-bis[2-[(2-hydroxy-5-(2-nitroazo)benzylidene) amino]ethoxy]-26,28-dihydroxycalix[4]arene (5), 5,11,17,23-tetra-tert-butyl-25,27-bis[2-[(2-hydroxy-5-(4-chloroazo)benzylidene)amino]ethoxy]-26,28-dihydroxycalix[4]arene (6), have been synthesized as an selective chromoionophore for Na+. The complexation behavior of ligands 4-6 with alkali metal ions Na+, K+, Rb+and Cs+ has been evaluated by using UV-Vis spectrometry in CH3CN-H2O (99:1/V:V) solution at 25°C. The UV-Vis spectra show that the complexation of 4-6 with Na+exhibits obvious bathochromic shifts (λmax 379→480 nm) and there is a unique color change in the solution from yellow to red upon complexation. The binding constants for Na+ are higher than that of other alkali metal ions, giving the highest cation selectivity up to 7 for Na+/K+. The binding ability and photophysical behavior of alkali cations by calix[4]arene derivatives 4-6 are discussed from the point of view of substituted effects at the lower rim of parent calix[4]arene and size-fit concept between host calix[4]arenes and guest cations.  相似文献   

11.
通过对杯[4]芳烃以及杯[6]芳烃上缘进行烯丙基化和硅氢加成2步衍生化反应得到硅氢化杯[4]芳烃以及硅氢化杯[6]芳烃,再将这2种硅氢化杯芳烃衍生物分别接枝到超细SiO2上。在不同的pH值条件下,就2种杯芳烃接枝超细SiO2衍生物对水合Cu2+及Ag+的萃取性能进行了研究。结果表明,与对叔丁基杯芳烃相比较,杯芳烃接枝超细SiO2衍生物对Cu2+和Ag+的萃取率都有所提高,其中杯[4]芳烃接枝超细SiO2对Ag+的最高萃取率达到98.78%,杯[6]芳烃接枝超细SiO2对Cu2+的最高萃取率达到67.74%。  相似文献   

12.
In this study, calix[4]arene derivatives (1114) bearing a single nucleobase (adenine, thymine, cytosine or guanine) were synthesised via click chemistry. The complexation ability of the synthesised derivatives with alkali metal ions was measured using MALDI-TOF mass spectrometry, and their molecular assembly in CDCl3 was determined using 1H NMR. Calix[4]arene derivatives (1114) formed 1:1 complexes with all alkali metal ions and the rank order for the complexation selectivity was Rb+ > Cs+ > K+ ? Na+ > Li+. The attachment of nucleobase at the upper rim of calix[4]arene had little effect on its complexation selectivity for alkali metal ions. Thymine-, adenine- and guanine-calix[4]arenes formed self-assembled structures in CDCl3 via base–base interactions. In addition, adenine-calix[4]arene (11) bound to thymine-calix[4]arene (12) to form a discrete species via Hoogsteen hydrogen bonding.  相似文献   

13.
本文以对叔丁基杯[8]芳烃(H8C8A)为配体,在溶剂热条件下制得了3个3d-5f化合物,[Co2Th4(HC8A)2O2(OH)2(DMF)6](1)、[Ni2Th5(H2C8A)(C8A)O4(OH)2(DMF)5(CH3OH)2](2)、[Zn2Th6(HC8A)(C8A)O5(CH3O)(C3H6NO22(DMF)5(CH3OH)](3)(其中H8C8A=对叔丁基杯[8]芳烃,DMF=N,N-二甲基甲酰胺)。X-射线单晶测试表明,这3个化合物均为2个以尾对尾方式排列的杯[8]芳烃分子中间夹1个3d-5f核簇的三明治型结构。杯[8]芳烃均表现为双锥式构型,且每个锥式空腔下缘结合1个钍离子,双锥的连接处及2个杯芳烃分子之间由过渡金属离子或钍离子连接。不同过渡金属离子不同的配位环境导致3种不同核簇的形成。化合物1的磁性研究表明,该化合物在低温下表现出弱铁磁性相互作用。  相似文献   

14.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq)+NaL+(nb)⇔ML+(nb)+Na+(aq) taking place in the two-phase water-nitrobenzene system (M+ = Li+, H3O+, NH4+, Ag+; L = hexaethyl calix[6]arene hexaacetate; aq = aqueous phase, nb = nitrobenzene phase) were determined. Furthermore, the stability constants of the ML+ complexes in water saturated nitrobenzene were calculated; they were found to increase in the cation order H3O+<NH4+<Li+<Ag+.  相似文献   

15.
We first make use of aminolysis of calix[4]arene esters to synthesize calix[4]arene amides. When the two ethyl esters of the calix[4]arene esters are aminolysized, the 1, 3-amide derivative is formed selectively. The crystal structures of the calix-[4]arene with two butyl amide (3b) and four butyl amide moieties (4b) were determined. The intermolecular hydrogen bonds make 4b form two-dimensional net work insolid state. The 1H NMR spectra prove that 3b is of a pinched cone conformation, while 4b and tetraheptylamide-calix[4]arene (6b) take fast interconversion between two C2v isomers in solution and appear an apparent cone conformation at room temperature. As decreasing temperature, the interconversion rate decreases gradually and, finally, the interconversion process is frozen at Tc = -10℃, which makes both conformations of 4b and 6b the pinched cone structures. The hydrogen bond improves the interconversion barrier, and the large different values of the potential barrier between 6b and 4b (or 6b) may  相似文献   

16.
Abstract

The central feature of the complicated structure of Na[Eu3(p-sulfonatocalix[4]arene)2(OH2)18(ONC5H5)3]·14 H2O is the coordination sphere of one of the three independent europium atoms. Its first coordination sphere consists of seven water molecules, the oxygen atom of a pyridine N-oxide molecule, and a sulfonate oxygen atom from one of the two independent calix[4]arenes. The second-sphere coordination consists of the second calix[4]arene which is bound to the coordinated pyridine N-oxide via hydrophobic interactions, and a second pyridine N-oxide which is hydrogen bonded to a coordinated water molecule. The third-sphere coordination consists of the binding of the second-sphere coordinated pyridine N-oxide to the cavity of the first-sphere coordinated calix[4]arene. Na[Eu3(p-sulfonatocalix[4]arene)2(OH2)18(ONC5H5)3]·14 H2O crystallizes in the monoclinic space group P21/c with a = 20.973(2), b = 18.678(2), c = 29.502(4)Å, β = 109.19(1)°, and Dc = 1.74 g cm?3 for Z = 4. Refinement based on 10,043 observed reflections led to a final R value of 0.091.  相似文献   

17.
Thiacalix[4]arene 2 , calix[4]arene 3 a and its tetraether fixed in the cone conformation 3 b form homo‐ and heterodimeric capsules in apolar solvents, which are held together by a seam of NH???O=P hydrogen bonds between carbamoylmethyl phospine oxide functions attached to their wide rim. Their internal volume of ~370 Å3 requires the inclusion of a suitable guest. Although neutral molecules such as adamantane (derivatives) or tetraethylammonium cations form kinetically stable complexes (1H‐ and 31P‐time scale), the included solvent is rapidly exchanged. The internal mobility of the included tetraethylammonium cation is distinctly higher (ΔG=42.5 and 49.7 kJ mol?1 for 3 a and 3 b ) than that for similar capsules of tetraurea calix[4]arenes 1 . Mixtures of 1 with 2 , 3 a , or 3 b contain only the two homodimers but the heterodimerization occurs with the tetraloop tetraurea 6 , which cannot form homodimers. Two dimers with cationic guests ( 2? (C5H5)2Co+ ?2 and 3 a? Et3NH+ ? H2O ?3 a ) were confirmed by single‐crystal X‐ray analysis.  相似文献   

18.
Role of alkali and alkaline earth ions on the formation of calix[4]arene-amide derivatives through O-alkylation of the lower rim phenolic-OH groups in general and template action of K+ in particular have been explored. Na+ and K+ ions among alkali, and Ca2+ and Sr2+ ions among alkaline earth have shown tetra-amide derivatives bound to metal ion species. Among all these, potassium salts act as template and yields a K+ bound tetra-amide derivative where the charge is counter balanced by a calix[4] arene-monoanion and the product is crystallographically characterized. Change in the amide precursor used in these O-alkylation reactions has no effect on the type of the amide derivative formed. Also demonstrated is a direct one-step reaction for the preparation of 1,3-di-amide derivative in high yield and low reaction period using CsHCO3.  相似文献   

19.
In order to obtain insights into relationships between the calix[4]arene structure and the ion selectivity in the electrode system, 20 ionophoric calix[4]arenes were synthesized and their ion selectivity (with Na+ as a standard) estimated. Among these ionophoric calix[4]arenes, 25,26,27,28-tetrakis[(ethoxycarbonyl)methoxy]-p-t-octylcalix[4]arene afforded the highest logK NA,M pot value (–3.1) in the presence of 2-fluorophenyl-2-nitrophenylether (10) as the best of 13 plasticizers. This is the first example in which the Na+/K+ selectivity exceeds a factor of 103 in the electrode system based on the neutral carrier. The high Na+ selectivity is attributed to modification of the upper rim which ostensibly has no relation with the component of the cavity. This paper demonstrates the potential relationships between the unique structure of the calix[4]arene-based ligands and selectivity performance for the design of ion-selective electrodes.  相似文献   

20.
王浩  张衡益  刘育 《中国化学》2005,23(6):740-744
Two calix[4]arene isomers with benzaldehyde moieties, i.e., 5,11,17,23-tetra-tert-butyl-25,27-bis[2-(o-formyl-phenoxy)ethoxy]-26,28-dihydroxycalix[4]arene (3) and 5,11,17,23-tetra-tert-butyl-25,27-bis[2-(p-formylphenoxy)-ethoxy]-26,28-dihydroxycalix[4]arene (4), were synthesized according to a newly designed route in high yields, and their crystal structures have been determined by X-ray crystallographic study. The photophysical behavior on complexation of calix[4]arene derivatives 3 and 4 with terbium(Ⅲ) nitrate was investigated in anhydrous acetonitrile at 25℃ by UV-Vis and fluorescence spectroscopies. The crystallographic structure of 3 indicated that the eight oxygen atoms formed a preorganized ionophoric cavity due to intramolecular π-π stacking, which could encapsulate lanthanide ions tightly. In sharp contrast, the compound 4 formed a linear array by intermolecular π-π stacking, hence the oxygen atoms of pendant arms could not coordinate with metal ions, giving a poor binding ability to Tb^3 . The absorption spectra of 3 with Tb^3 showed clearly a new broad intense absorption at 385nm. Interestingly, the narrow emission line spectrum has also been observed for compound 3 with Tb^3 , and the results obtained were discussed from the viewpoint of energy transfer mechanism between host structures and the properties of lanthanide ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号