首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the La(3+)-catalyzed methanolysis of N-phenyl-beta-lactam (2) and N-p-nitrophenyl-beta-lactam (3) as well as that of nitrocefin (1) were studied at 25 degrees C under buffered conditions. In the case of 2 and 3, the observed second-order rate constants (k(2)(obs)) for catalysis plateau at pH 7.5-7.8, reaching values of 1 x 10(-)(2) and 35 x 10(-)(2) M(-)(1) s(-)(1) respectively. Potentiometric titrations of solutions of 2 x 10(-)(3) M La(OTf)(3) were analyzed in terms of a dimer model (La(3+)(2)((-)OCH(3))(n)()), where the number of methoxides varies from 1 to 5. The species responsible for catalysis in the pH range investigated contain 1-3 methoxides, the one having the highest catalytic activity being La(3+)(2)((-)OCH(3))(2), which comprises 80% of the total La(3+) forms present at its pH maximum of 8.9. The catalysis afforded by the La(3+) dimers at a neutral pH is impressive relative to the methoxide reactions: at pH 8.4 a 1 mM solution of catalyst (generated from 2 mM La(OTf)(3)) accelerated the methanolysis of 2 by approximately 2 x 10(7)-fold and 3 by approximately 5 x 10(5)-fold. As a function of metal ion concentration, the La(3+)-catalyzed methanolysis of 1 proceeds by pathways involving first one bound metal ion and then a second La(3+) leading to a plateau in the k(obs) vs [La(3+)](total) plots at all pH values. The k(max)(obs) pseudo-first-order rate constants at the plateaus, representing the spontaneous methanolysis of La(3+)(2)(1(-)) forms, has a linear dependence on [(-)OCH(3)] (slope = 0.84 +/- 0.05 if all pH values are used and 1.02 +/- 0.03 if all but the two highest pH values are used). The speciation of bound 1 at a La(3+) concentrations corresponding to that of the onset of the kinetic plateau region was approximated through potentiometric titration of the nonreactive 3,5-dinitrobenzoic acid in the presence of 2 equiv of La(OTf)(3). A total speciation diagram for all bound forms of La(3+)(2)(1(-))((-)OCH(3))(n)(), where n = 0-5, was constructed and used to determine their kinetic contributions to the overall pH vs k(max)(obs) plot under kinetic conditions. Two kinetically equivalent mechanisms were analyzed: methoxide attack on La(3+)(2)(1(-))((-)OCH(3))(n)(), n = 0-2; unimolecular decomposition of the forms La(3+)(2)(1(-))((-)OCH(3))(n)(), n = 1-3.  相似文献   

2.
The methanolysis of the insecticide paraoxon (2) was investigated in methanol solution containing varying [La(OTf)(3)] (OTf = (-)OS(O)(2)CF(3)) as a function of at 25 degrees C. Plots of the pseudo-first-order rate constants (k(obs)) for methanolysis as a function of [La(OTf)(3)](total) were obtained under buffered conditions from 5.15 to 10.97, and the slopes of the linear parts of these were used to determine the second-order rate constants (k(2)(obs)) for the La(3+)-catalyzed methanolysis of 2. Detailed analysis of the potentiometric titration data of La(OTf)(3) in methanol through fits to a multicomponent equilibrium mixture of dimers of general stoichiometry La(3+)(2)((-)OCH3)n, where n assumes values of 1-5, gives the equilibrium distribution of each as a function of. These data, when fit to a second expression describing k(2)(obs) in terms of a linear combination of individual rate constants k(2)(2:1), k(2)(2:2).k(2)(2:)n for the dimers, allow one to describe the overall catalytic profile in terms of the individual contributions. The most catalytically important species are the three dimers La(3+)(2)((-)OCH3)1, La(3+)(2)((-)OCH3)2, and La(3+)(2)((-)OCH3)3. The catalysis of the methanolysis of 2 is spectacular: a 2 x 10(-3) M solution of [La(3+)](total), at neutral, affords a 10(9)-fold acceleration relative to the base reaction (t(1/2) approximately 20 s at 8.2) with excellent turnover. A mechanism of the catalyzed reaction involving the La(3+)(2)((-)OCH3)2 species is proposed.  相似文献   

3.
The metal ions Zn(2+), Co(2+), and La(3+) strongly catalyze the methanolysis of the activated amides acetylimidazole (1) and its ligand-exchange-inert Co(III) complex, (NH(3))(5)Co(III)-AcIm (2). Studies of the kinetics of methanolysis are performed with pH measurement and control, and the metal ions are soluble in the medium throughout the pH regions where ionization of the M(x+)(CH(3)OH)(y) occurs. Zn(2+) and Co(2+) act as Lewis acids toward 1, catalyzing attack of external methoxide on a 1:M(2+) complex at values only 100-fold lower than the diffusion limit, the k(OR) values being 5.6 x 10(7) M(-1) s(-1) and 2.5 x 10(7) M(-1) s(-1), while that for CH(3)O(-) attack on 2 is 4.69 x 10(7) M(-1) s(-1). Since neither Zn(2+) nor Co(2+) promotes the methanolysis of 2, these metals appear to be acting through transient binding to the distal N of 1, which activates the C=O of the complex to external CH(3)O(-) attack. La(3+) catalyzes the methanolysis of both 1 and 2, which occurs by a mechanism that is fundamentally different from that exhibited by Zn(2+) and Co(2+) in that the active species appears to be a bis-methoxy-bridged dimer (La(3+))(2)(CH(3)O(-))(2)(CH(3)OH)(x)() that interacts directly with the C=O unit of the substrate.  相似文献   

4.
The methanolyses of two neutral phosphorus triesters, paraoxon (1) and fenitrothion (3), were investigated as a function of added Zn(OTf)(2) or Zn(ClO(4))(2) in methanol at 25 degrees C either alone or in the presence of equimolar concentrations of the ligands phenanthroline (4), 2,9-dimethylphenanthroline (5), and 1,5,9-triazacyclododecane (6). The catalysis requires the presence of methoxide, and when studied as a function of added NaOCH(3), the rate constants (k(obs)) for methanolysis of Zn(2+) alone or in the presence of equimolar 4 or 5 maximize at different [(-)OCH(3)]/[Zn(2+)](total) ratios of 0.3, 0.5, and 1.0, respectively. Plots of k(obs) vs [Zn(2+)](total) either alone or in the presence of equimolar ligands 4 and 5 at the [(-)OCH(3)]/[Zn(2+)](total) ratios corresponding to the rate maxima are curved and show a nonlinear dependence on [Zn(2+)](total). In the cases of 4 and 5, this is explained as resulting from formation of a nonactive dimer, formulated as a bis-mu-methoxide-bridged form (L:Zn(2+)((-)OCH(3))(2)Zn(2+):L) in equilibrium with an active monomeric form (L:Zn(2+)((-)OCH(3))). In the case of the Zn(2+):6 system, no dimeric forms are present as can be judged by the strict linearity of the plots of k(obs) vs [Zn(2+)](total) in the presence of equimolar 6 and (-)OCH(3). Analysis of the potentiometric titration curves for Zn(2+) alone and in the presence of the ligands allows calculation of the speciation of the various Zn(2+) forms and shows that the binding to ligands 4 and 6 is very strong, while the binding to ligand 5 is weaker. Overall the best catalytic system is provided by equimolar Zn(2+), 5, and (-)OCH(3), which exhibits excellent turnover of the methanolysis of paraoxon when the substrate is in excess. At a concentration of 2 mM in each of these components, which sets the pH of the solution at 9.5, the acceleration of the methanolysis of paraoxon and fenitrothion relative to the methoxide reaction is 1.8 x 10(6)-fold and 13 x 10(6)-fold, respectively. A mechanism for the catalyzed reactions is proposed which involves a dual role for the metal ion as a Lewis acid and source of nucleophilic Zn(2+)-bound (-)OCH(3).  相似文献   

5.
The La3+-catalyzed methanolysis of two phosphorothioate derivatives, O,O-diethyl S-(p-nitrophenyl) phosphorothioate (4a) and O,O-diethyl S-phenyl phosphorothioate (4b) were studied as a function of [La3+] and pH in methanol solvent. In both cases the kinetics of catalyzed methanolysis maximize at pH 9.1 and a detailed analysis indicates that the dominant species responsible for catalysis are dimers formulated as La3+(2)(-OCH3)2 and La3+(2)(-OCH3)4. The catalysis is compared with that seen for the corresponding phosphate esters, namely paraoxon (3a) and O,O-diethyl phenyl phosphate (3b) for which La3+ catalysis is slightly better and markedly worse than for 4a and 4b respectively. Overall, at s(s)pH 9.1, a 2 mmol dm-3 solution of La(OTf)3 with equimolar NaOCH3 provides accelerations of 2.2x10(8)-fold, 9.7x10(6)-fold and 9.3x10(6)-fold for methanolysis of 3a, 4a and 4b, relative to the background reaction of methoxide reacting with the three substrates. In each case, the P-containing product of the reactions is exclusively diethyl methyl phosphate. Turnover experiments with 6-fold and 100-fold excesses of 4a and 4b respectively, methanolyzed in the presence of approximately 10 mmol dm-3 La3+ and equimolar NaOCH3, indicate that the reactions are essentially complete within 103 s and 70 min respectively. The latter turnover experiment with 4b corresponded to 100 turnovers in 70 min and an overall reaction t1/2 of 8 min. A common mechanism of reaction is postulated for each of the substrates which involves Lewis acid coordination of one of the La3+ to the P=O unit, followed by nucleophilic attack by the second La3+-(-)OCH3.  相似文献   

6.
The kinetics of methanolysis of the title compound (3) were studied in the presence of Cu(2+), introduced as Cu(OTf), in the presence of 0.5-1.0 eq. of methoxide and in the presence of 1.0 eq. of a ligand such as bipyridyl (5), phenanthroline (6) or 1,5,9-triazacyclododecane (4). In all cases the active species involve Cu(2+)((-)OCH(3)). In the case of added strong-binding ligands 5 or 6, a plot of the observed rate constant for methanolysis of 3 vs. [Cu(2+)](total) gives a curved line modelled by a process having a [Cu(2+)](1/2) dependence consistent with an active monomeric species in equilibrium with an inactive dimer i.e.[LCu(2+)((-)OCH(3))](2) <==> 2LCu(2+)((-)OCH(3)). In the case of the added strong binding ligand 4, the plot of the observed rate constant for methanolysis of 3 vs.[Cu(2+)](total) gives a straight line consistent with the catalytically active species being Cu(2+)(OCH(3)) which shows no propensity to form inactive dimers. Turnover experiments where the [3] > [Cu(2+)](total) indicate that the systems are truly catalytic. In the optimum case a catalytic system comprising 1 mM of the complex 4Cu(2+)((-)OCH(3)) catalyzes the methanolysis of 3 with a t(1/2) of approximately 58 s accounting for a 1.7 x 10(9)-fold acceleration relative to the background reaction at near neutral (s)(s)pH (8.75).  相似文献   

7.
The di-Zn(II) complex of 1,3-bis[ N1, N1'-(1,5,9-triazacyclododecyl)]propane with an associated methoxide ( 3:Zn(II) 2: (-)OCH 3) was prepared and its catalysis of the methanolysis of a series of fourteen methyl aryl phosphate diesters ( 6) was studied at s (s)pH 9.8 in methanol at 25.0 +/- 0.1 degrees C. Plots of k obs vs [ 3:Zn(II) 2: (-)OCH 3] free for all members of 6 show saturation behavior from which K(M) and kcat (max) were determined. The second order rate constants for the catalyzed reactions (kcat (max)/K(M)) for each substrate are larger than the corresponding methoxide catalyzed reaction (k 2 (-OMe)) by 1.4 x 10(8) to 3 x 10 (9)-fold. The values of k cat (max) for all members of 6 are between 4 x 10(11) and 3 x 10(13) times larger than the solution reaction at s (s)pH 9.8, with the largest accelerations being given for substrates where the departing aryloxy unit contains ortho-NO 2 or C(O)OCH 3 groups. Based on the linear Br?nsted plots of k cat (max) vs s (s)pKa of the phenol, beta lg values of -0.57 and -0.34 are determined respectively for the catalyzed methanolysis of "regular" substrates that do not contain the ortho-NO 2 or C(O)OCH 3 groups, and those substrates that do. The data are consistent with a two step mechanism for the catalyzed reaction with rate limiting formation of a catalyst-coordinated phosphorane intermediate, followed by fast loss of the aryloxy leaving group. A detailed energetics calculation indicates that the catalyst binds the transition state comprising [CH 3O (-): 6], giving a hypothetical [ 3:Zn(II) 2:CH 3O (-): 6] complex, by -21.4 to -24.5 kcal/mol, with the strongest binding being for those substrates having the ortho-NO 2 or C(O)OCH 3 groups.  相似文献   

8.
The reaction of Ln(NO(3))(3).aq with K(3)[Fe(CN)(6)] or K(3)[Co(CN)(6)] and 2,2'-bipyridine in water led to five one-dimensional complexes: trans-[M(CN)(4)(mu-CN)(2)Ln(H(2)O)(4) (bpy)](n)().XnH(2)O.1.5nbpy (M = Fe(3+) or Co(3+); Ln = Sm(3+), Gd(3+), or Yb(3+); X = 4 or 5). The structures for [Fe(3)(+)-Sm(3+)] (1), [Fe(3)(+)-Gd(3+)] (2), [Fe(3)(+)-Yb(3+)] (3), [Co(3)(+)-Gd(3+)] (4), and [Co(3)(+)-Yb(3+)] (5) have been solved; they crystallize in the triclinic space P1 and are isomorphous. The [Fe(3+)-Sm(3+)] complex is a ferrimagnet, its magnetic studies suggesting the onset of weak ferromagnetic 3-D ordering at 3.5 K. The [Fe(3+)-Gd(3+)] interaction is weakly antiferromagnetic. The isotropic nature of Gd(3+) allowed us to evaluate the exchange interaction (J = 0.77 cm(-)(1)).  相似文献   

9.
The citrate complexes of Zn(2+) and Cd(2+) have been investigated by pH titration at I = 0.1 M (KNO(3)) and 10, 25, 35 and 45 degrees . The species found were [Zn(cit)](-), [Zn(cit)H], [Zn(cit)(2)](4-) and [Zn(2)(cit)(2)H(-)(2)](4-), [Cd(cit)](-), [Cd(cit)H], [Cd(cit)(2)](4-) and [Cd(cit)H(-1)](2-). From the dependence of the formation constants on temperature, DeltaH degrees and DeltaS degrees values were calculated. Speciation in the Zn(2+)]- and Cd(2+)-citrate systems is discussed with particular attention to formation of polynuclear species. Some comparisons with literature data are made.  相似文献   

10.
Leonard MA  Nagi FI 《Talanta》1969,16(7):1104-1108
Mixtures of La(3+) and Ni(2+) ions form with Alizarin Fluorine Blue (1,2-dihydroxyanthraquinon-3-ylmethylamine-N,N-diacetic acid; AFB) the ternary complex (AFB)(2)La. Ni(n-) which has maximum light absorption at 550 nm ( = 1.13 x 10(4)); K(cond) = 1.9 x 10(5) lmole(-1) at pH 4.5 and 25 degrees , ionic strength = 0.1. The use of this complex for the photometric determination of nickel has been investigated.  相似文献   

11.
Some chiral lanthanide complexes of the Schiff base adducts of: a) bis(2-pyridylcarboxaldehyde) and (1R),(2R)-trans-1,2-diaminocyclohexane (Pyr-R,R'-chxn: 3); b) 6-methyl-2-pyridylcarboxaldehyde and (1R),(2R)-trans 1,2-diaminocyclohexane (MePyr-chxn, 4); and c) 2,6-pyridyldicarboxaldehyde and (1R),(2R)-trans-1,2-diaminocyclohexane ((Pyr-R,R'-chxn)(2), 5) have been screened for their utility to promote kinetic resolution via metal catalyzed alcoholyses of the p-nitrophenyl esters of chiral D- and L-Boc-protected glutamine and phenylalanine. Solvents were varied to optimize the kinetic selectivity values, defined as k(2)(L)/k(2)(D) or k(2)(D)/k(2)(L), for the methanolysis and in some cases, ethanolysis of these substrates. At ambient temperature the greatest selectivity was found for the ethanolysis of Boc-Gln-OPNP, catalyzed by 3:Yb(3+):((-)OEt) (k(2)(L)/k(2)(D) = 7.2). The greatest selectivity for Boc-Phe-OPNP is k(2)(D)/k(2)(L) = 3.9 for its methanolysis promoted by 5:La(3+):((-)OMe). A kinetic method is introduced for the determination of both d and l rate constants for catalyzed alcoholysis from a single kinetic experiment. The activation parameters DeltaH(double dagger) and DeltaS(double dagger) were determined for the metal catalyzed methanolysis and ethanolysis of the Boc-Gln-OPNP substrates, and selectivity factors were found to increase at lower temperatures. A low temperature time course for the ethanolysis of racemic Boc-Gln-OPNP catalyzed by 3:Yb(3+):((-)OEt) at -15 degrees C indicated that after 3 hours 60% residual d-enantiomer was observed having an enantiomeric excess of >95% ee. The activation parameters for the ethanolysis of the same substrate catalyzed by (Pyr-R,R'-chxn)(2):La(3+):((-)OEt) predict a k(2)(D)/k(2)(L) = 40.4 at -40 degrees C with a large ee of >99% with approximately 80% of l isomer remaining at that temperature which has been experimentally confirmed.  相似文献   

12.
The kinetics of the La3+-catalyzed methanolysis of a series of S-aryl methylphosphonothioates (4a-e, phenyl substituents = 3,5-dichloro, 4-chloro, 4-fluoro, 4-H, 4-methoxy) were studied at 25 °C with s(s)pH control. The reaction involves saturation binding of the anionic substrates to dimeric La3+/methoxide catalysts formulated as La2(3+)(-OCH3)x, where x = 2-5 depending on the solution s(s)pH. Cleavage of the La3+-bound methylphosphonothioates is fast, ranging from 5 × 10(-3) s(-1) to 5.5 × 10-(5) s(-1) for substrates 4a-e at a s(s)pH of 8.4 and 1.6 × 10(-1) s(-1) to 4 × 10(-3) s(-1) at a s(s)pH of 11.7. The rate accelerations for the methanolysis of substrates 4a-e, relative to their background methoxide-promoted reactions, average 7 × 10(10) and 1.5 × 10(9), respectively, at s(s)pH's of 8.4 and 11.7. The catalytic system is predicted to cleave EA 2192 (S-2(N,N-di-iso-propylaminoethyl)methylphosphonothioate), a toxic byproduct of the hydrolysis of VX, with a t1/2 between 4 and 8 min at a s(s)pH of 8.4, and 27 min at a s(s)pH of 11.7.  相似文献   

13.
The Eu(3+)-promoted methanolysis of three esters, p-nitrophenyl acetate (1), phenyl acetate (2), and ethyl acetate (3) is reported, as well as the potentiometric titration of Eu(3+) in MeOH at various [Eu(SO(3)CF(3))(3)] (SO(3)CF(3) = OTf). The titration data are analyzed in terms of two ionizations corresponding to macroscopic and values, which are respectively defined as the values at which the [CH(3)O(-)]/[Eu(3+)] = 0.5 and 1.5. As a function of increasing [Eu(OTf)(3)], increases slightly due to a proposed Eu(3+)/(-)OTf ion pairing effect, which tends to reduce the acidity of the metal-coordinated CH(3)OH, while decreases due to the formation of Eu(3+) dimers and oligomers which stabilize the (Eu(3+)(CH(3)O(-))(2))(n)forms through bridging of the methoxides between two or more metal ions. For ester 1, a detailed kinetic analysis of the reaction rates as a function of both [Eu(OTf)(3)] and in buffered methanol reveals that the /second-order rate constant (k(2)) plot for the catalyzed reaction follows a bell-shaped profile, suggesting that the active form is a Eu(3+)(CH(3)O(-)) monomer with a kinetic of 6.33 +/- 0.06 for formation and a of 8.02 +/- 0.10 for its conversion into the inactive (Eu(3+)(CH(3)O(-))(2))(n)oligomeric form. At higher values, plots of k(obs) vs [Eu(OTf)(3)] are linear at low metal concentration and plateau at higher metal concentration due to the formation of inactive higher order aggregates. The Eu(3+)(CH(3)O(-)) catalysis of the methanolysis of esters 1, 2, and 3 is substantial. Solutions of 10(-2) M of the catalyst at 7.12 accelerate the reaction relative to the methoxide reaction at that by 8 530 000-, 195 000 000- and 7 813 000-fold, respectively.  相似文献   

14.
A newly designed probe, 6-thiophen-2-yl-5,6-dihydrobenzo[4,5]imidazo-[1,2-c] quinazoline (HL(1)) behaves as a highly selective ratiometric fluorescent sensor for Fe(2+) at pH 4.0-5.0 and Fe(3+) at pH 6.5-8.0 in acetonitrile-HEPES buffer (1/4) (v/v) medium. A decrease in fluorescence at 412 nm and increase in fluorescence at 472 nm with an isoemissive point at 436 nm with the addition of Fe(2+) salt solution is due to the formation of mononuclear Fe(2+) complex [Fe(II)(HL)(ClO(4))(2)(CH(3)CN)(2)] (1) in acetonitrile-HEPES buffer (100 mM, 1/4, v/v) at pH 4.5 and a decrease in fluorescence at 412 nm and increase in fluorescence at 482 nm with an isoemissive point at 445 nm during titration by Fe(3+) salt due to the formation of binary Fe(3+) complex, [Fe(III)(L)(2)(ClO(4))(H(2)O)] (2) with co-solvent at biological pH 7.4 have been established. Binding constants (K(a)) in the solution state were calculated to be 3.88 × 10(5) M(-1) for Fe(2+) and 0.21 × 10(3) M(-1/2) for Fe(3+) and ratiometric detection limits for Fe(2+) and Fe(3+) were found to be 2.0 μM and 3.5 μM, respectively. The probe is a "naked eye" chemosensor for two states of iron. Theoretical calculations were studied to establish the configurations of probe-iron complexes. The sensor is efficient for detecting Fe(3+)in vitro by developing a good image of the biological organelles.  相似文献   

15.
The kinetics of cyclization of 2-hydroxypropyl p-nitrophenyl phosphate (1) promoted by two mononuclear Zn(II) catalytic complexes of bis(2-pyridylmethyl)benzylamine (4) and bis(2-methyl 6-pyridylmethyl)benzylamine (5) in methanol were studied under (s)(s)pH-controlled conditions (where (s)(s)pH refers to [H(+)] activity in methanol). Potentiometric titrations of the ligands in the absence and presence of Zn(2+) and a non-reactive model for 1 (2-hydroxylpropyl isopropyl phosphate (HPIPP, 6)) indicate that the phosphate is bound tightly to the 4:Zn(II) and 5:Zn(II) complexes as L:Zn(II):6(-), and that each of these undergoes an additional ionization to produce L:Zn(II):6(-):((-)OCH(3)) or a bound deprotonated form of the phosphate, L:Zn(II):6(2-). Kinetic studies as a function of [L:Zn(II)] indicate that the rate is linear in [L:Zn(II)] at concentrations well above those required for complete binding of the substrate. Plots of the second order rate constants (defined as the gradient of the rate constant vs. [complex] plot) vs. (s)(s)pH in methanol are bell-shaped with rate maxima of 23 dm mol(-1) s(-1) and 146 dm mol(-1) s(-1) for 4:Zn(II) and 5:Zn(II), respectively, at their (s)(s)pH maxima of 10.5 and 10. A mechanism is proposed that involves binding of one molecule of complex to the phosphate to yield a poorly reactive 1 : 1 complex, which associates with a second molecule of complex to produce a transient cooperative 2 : 1 complex within which the cyclization of 1 is rapid. The observations support an effect of the reduced polarity solvent that encourages the cooperative association of phosphate and two independent mononuclear complexes to give a reactive entity.  相似文献   

16.
Hydride transfer from 10-methyl-9,10-dihydroacridine (AcrH(2)) to 3,6-diphenyl-1,2,4,5-tetrazine (Ph(2)Tz), which contains a N=N double bond, occurs efficiently in the presence of Sc(OTf)(3) (OTf = OSO(2)CF(3)) in deaerated acetonitrile (MeCN) at 298 K, whereas no reaction occurs in the absence of Sc(3+). The observed second-order rate constant (k(obs)) increases with increasing Sc(3+) concentration to approach a limited value. When AcrH(2) is replaced by the dideuterated compound (AcrD(2)), the rate of Sc(3+)-promoted hydride transfer exhibits the same primary kinetic isotope effect (k(H)/k(D) = 5.2+/-0.2), irrespective of Sc(3+) concentration. Scandium ion also promotes an electron transfer from CoTPP (TPP(2)(-) = tetraphenylporphyrin dianion) and 10,10'-dimethyl-9,9'-biacridine [(AcrH)(2)] to Ph(2)Tz, whereas no electron transfer from CoTPP or (AcrH)(2) to Ph(2)Tz occurs in the absence of Sc(3+). In each case, the observed second-order rate constant of electron transfer (k(et)) shows a first-order dependence on [Sc(3+)] at low concentrations and a second-order dependence at higher concentrations. Such dependence of k(et) on [Sc(3+)] is ascribed to formation of 1:1 and 1:2 complexes between Ph(2)Tz(*)(-) and Sc(3+) at the low and high concentrations of Sc(3+), respectively, which results in acceleration of the rate of electron transfer. The formation of 1:2 complex has been confirmed by the ESR spectrum in which the hyperfine structure is different from that of free Ph(2)Tz(*)(-). The 1:2 complex formation results in the saturated kinetic dependence of k(obs) on [Sc(3+)] for the Sc(3+)-promoted hydride transfer, which proceeds via Sc(3+)-promoted electron transfer from AcrH(2) to Ph(2)Tz, followed by proton transfer from AcrH(2)(*)(+) to the 1:1 Ph(2)Tz(*)(-)-Sc(3+) complex and the subsequent facile electron transfer from AcrH(*) to Ph(2)TzH(*). The effects of counteranions on the Sc(3+)-promoted electron transfer and hydride transfer reactions are also reported.  相似文献   

17.
Li X  Liu W  Guo Z  Tan M 《Inorganic chemistry》2003,42(26):8735-8738
Lanthanide nitrate complexes with the heptadentate ligand L (6-[2-(2-(diethylamino)-2-oxoethoxy)ethyl]-N,N,12-triethyl-11-oxo-3,9-dioxa-6,12-diazatetradecanamide), [Ln(2)L(NO(3))(6)] (Ln = La, Nd, Sm, Eu, Ho), have been prepared and characterized. The X-ray crystallographic studies show that, in [La(2)L(NO(3))(6)(H(2)O)].H(2)O (1), two complex cations [LaL(H(2)O)](3+) are linked by a hexanitrato anion [La(NO(3))(6)](3)(-) and form a trinuclear cation. In [Nd(2)L(NO(3))(6)(H(2)O)].CHCl(3).1/2CH(3)OH.1/2H(2)O (2), one complex cation [NdL(H(2)O)](3+) and a hexanitrato complex anion [Nd(NO(3))(6)](3)(-) are linked by a bridging NO(3)(-) to form a dinuclear complex. In both complexes, the bridging nitrate is an unusual tetradentate ligand. The metal ions are 12-coordinated in hexanitrato anions and 10-coordinated in complex cations. The chainlike supramolecular structures of La(3+) complex are parallel and have no hydrogen bonds in between, while, in the Nd(3+) complex, a chiral cavity is formed by hydrogen bonds between two adjacent supramolecular chains. These influences are further investigated by assessing the separation efficiency of L and (1)H NMR spectra of its lanthanide nitrate mixtures in solution.  相似文献   

18.
A series of iron(III) complexes based on the tetradentate ligand 4-((1-methyl-1H-imidazol-2-yl)methyl)-1-thia-4,7-diazacyclononane (L) has been synthesized, and their solution properties investigated. Addition of FeCl(3) to methanol solutions of L yields [LFeCl(2)]FeCl(4) as a dark red solid. X-ray crystallographic analysis reveals a pseudo-octahedral environment around iron(III) with the three nitrogen donors of L coordinated facially. Ion exchange reactions with NaPF(6) in methanol facilitate chloride exchange resulting in a different diastereomer for the [LFeCl(2)](+) cation. X-ray analysis of [LFeCl(2)]PF(6) finds meridional coordination of the three nitrogen donors of L. Electrochemical studies of [LFeCl(2)](+) in acetonitrile display a single Fe(III)/(II) reduction potential at -280 mV versus ferrocenium/ferrocene. In methanol, a broad cathodic wave is observed because of partial exchange of one chloride for methoxide with half-potentials of -170 mV and -440 mV for [LFeCl(2)](+/0) and [LFeCl(OCH(3))](+/0), respectively. The equilibrium constants for chloride exchange are 7 × 10(-4) M(-1) for Fe(III) and 2 × 10(-8) M(-1) for Fe(II). In aqueous solutions chloride exchange yields three accessible complexes as a function of pH. Strongly acidic conditions yield the aqua complex [LFeCl(OH(2))](2+) with a measured pK(a) of 3.8 ± 0.1. Under mildly acidic conditions, the μ-OH complex [(LFeCl)(2)(OH)](3+) with a pK(a) of 6.1 ± 0.3 is obtained. The μ-oxo complex [(LFeCl)(2)(O)](2+) is favored under basic conditions. The diiron Fe(III)/Fe(III) complexes [(LFeCl)(2)(OH)](3+) and [(LFeCl)(2)(O)](2+) can be reduced by one electron to the mixed valence Fe(III)/Fe(II) derivatives at -170 mV and -390 mV, respectively. From pH dependent voltammetric studies, the pK(a) of the mixed valent μ-OH complex [(LFeCl)(2)(OH)](2+) is calculated at 10.3.  相似文献   

19.
1-Benzyl-4-tert-butyl-1,4-dihydronicotinamide (t-BuBNAH) reacts efficiently with p-benzoquinone (Q) to yield a [2+3] cycloadduct (1) in the presence of Sc(OTf)(3) (OTf = OSO(2)CF(3)) in deaerated acetonitrile (MeCN) at room temperature, while no reaction occurs in the absence of Sc(3+). The crystal structure of 1 has been determined by the X-ray crystal analysis. When t-BuBNAH is replaced by 1-benzyl-1,4-dihydronicotinamide (BNAH), the Sc(3+)-catalyzed cycloaddition reaction of BNAH with Q also occurs to yield the [2+3] cycloadduct. Sc(3+) forms 1:4 complexes with t-BuBNAH and BNAH in MeCN, whereas there is no interaction between Sc(3+) and Q. The observed second-order rate constant (k(obs)) shows a first-order dependence on [Sc(3+)] at low concentrations and a second-order dependence at higher concentrations. The first-order and the second-order dependence of the rate constant (k(et)) on [Sc(3+)] was also observed for the Sc(3+)-promoted electron transfer from CoTPP (TPP = tetraphenylporphyrin dianion) to Q. Such dependence of k(et) on [Sc(3+)] is ascribed to formation of 1:1 and 1:2 complexes between Q(*)(-) and Sc(3+) at the low and high concentrations of Sc(3+), respectively, which results in acceleration of the rate of electron transfer. The formation constants for the 1:2 complex (K(2)) between the radical anions of a series of p-benzoquinone derivatives (X-Q(*)(-)) and Sc(3+) are determined from the dependence of k(et) on [Sc(3+)]. The K(2) values agree well with those determined from the dependence of k(obs) on [Sc(3+)] for the Sc(3+)-catalyzed addition reaction of t-BuBNAH and BNAH with X-Q. Such an agreement together with the absence of the deuterium kinetic isotope effects indicates that the addition proceeds via the Sc(3+)-promoted electron transfer from t-BuBNAH and BNAH to Q. When Sc(OTf)(3) is replaced by weaker Lewis acids such as Lu(OTf)(3), Y(OTf)(3), and Mg(ClO(4))(2), the hydride transfer reaction from BNAH to Q also occurs besides the cycloaddition reaction and the k(obs) value decreases with decreasing the Lewis acidity of the metal ion. Such a change in the type of reaction from a cycloaddition to a hydride transfer depending on the Lewis acidity of metal ions employed as a catalyst is well accommodated by the common reaction mechanism featuring the metal-ion promoted electron transfer from BNAH to Q.  相似文献   

20.
For a number of phosphoryltransfer enzymes, including the exonuclease subunit of DNA polymerase I, a mechanism involving two-metal ions and double Lewis-acid activation of the substrate, combined with leaving group stabilization, has been proposed. Inspired by the active site structure of this enzyme, we have designed as a synthetic phosphoryl transfer catalyst the dicopper(II) macrocyclic complex LCu(2). Crystal structures of complexes [(L)Cu(2)(mu-NO(3))(NO(3))](NO(3))(2) (1), [(L)Cu(2)(mu-CO(3))(CH(3)OH)](BF(4))(2) (2), and [(L)Cu(2)(mu-O(2)P(OCH(3))(2))(NO(3))](NO(3))(2) (3) illustrate various possibilities for the interaction of oxoanions with the dicopper(II) site. 1 efficiently promotes the transesterification of dimethyl phosphate (DMP) in CD(3)OD, k(cat) = 2 x 10(-)(4) s(-)(1) at 55 degrees C. 1 is the only available catalyst for the smooth transesterification of highly inert simple dialkyl phosphates. From photometric titrations and the pH dependence of reactivity, we conclude that a complex [(L)Cu(2)(DMP)(OCH(3))](2+) is the reactive species. Steric bulk at the -OR substituents of phosphodiester substrates O(2)P(OR)(2)(-) drastically reduces the reactivity of 1. This is explained with -OR leaving group stabilization by Cu coordination, an interaction which is sensitive to steric crowding at the alpha-C-atom of substituent R. A proposed reaction mechanism related to that of the exonuclease unit of DNA polymerase I is supported by DFT calculations on reaction intermediates. The complex [(L)Cu(3)(mu(3)-OH)(mu-CH(3)O)(2)(CH(3)CN)(2)](ClO(4))(3) (4) incorporates a [Cu(OH)(OCH(3))(2)(CH(3)CN)(2)](-) complex anion, which might be considered as an analogue of the [PO(2)(OCH(3))(2)(OCD(3))](2)(-) transition state (or intermediate) of DMP transesterification catalyzed by LCu(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号