首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Structural characteristics of Alo.55 Gao.45N epilayer were investigated by high resolution x-ray diffraction(HRXRD)and transmission electron microscopy(TEM);the epilayer was grown on GaN/sapphire substrates using a high-temperature A1 N interlayer by metal organic chemical vapor deposition technique.The mosaic characteristics including tilt,twist,heterogeneous strain,and correlation lengths were extracted by symmetric and asymmetric XRD rocking curves as well as reciprocal space map(RSM).According to Williamson-Hall plots,the vertical coherence length of AlGaN epilayer was calculated,which is consistent with the thickness of AlGaN layer measured by cross section TEM.Besides,the lateral coherence length was determined from RSM as well.Deducing from the tilt and twist results,the screw-type and edge-type dislocation densities are 1.0×10~8 cm~(-2) and 1.8×10~(10) cm~(-2),which agree with the results observed from TEM.  相似文献   

2.
INCONEL alloy 783 was annealed and aged following the standard heat treatment procedure. One set of specimens was then isothermally exposed at 500 degrees C for 3000 h. Mechanical properties were measured at room temperature and 650 degrees C, and the results showed the prolonged exposure increased the strength and decreased elongation of alloy 783. The microstructures of as-produced and exposed material were examined using optical microscope, SEM and TEM, respectively. Three techniques, jet electro-polishing, ion milling, and focused ion beam, were employed to prepare the TEM samples to observe the variation of microstructure of alloy 783 due to isothermal exposure. TEM images of samples prepared by different methods were analyzed and compared. The results indicate that the jet electro-polishing technique allows the detail microstructure of alloy 783 subjected to different treatments to be well revealed, and thereby the TEM images can be used to explain the enhancement of strength of alloy 783 caused by isothermal exposure.  相似文献   

3.
In this paper we describe a novel method to prepare powder specimens for transmission electron microscopy examination. The powder samples are embedded in a metallic matrix by a route based on the plastic flow of a soft metal, using a small laboratory type hand driven hydraulic press. The resulting composites are processed with the conventional procedure based on grinding polishing and ion beam milling. The resulting TEM specimens have a self-supporting structure, good thermal and electrical conductivity while showing a well-polished surface resulting from the ion milling process. The method can be applied to a large variety of samples with sufficiently strong mechanical properties; a few examples are reported. The limits, mainly due to the mechanical toughness of the powder, are discussed.  相似文献   

4.
AlN/GaN superlattice buffer is inserted between GaN epitaxial layer and Si substrate before epitaxial growth of GaN layer. High-quality and crack-free GaN epitaxial layers can be obtained by inserting AlN/GaN superlattice buffer layer. The influence of AlN/GaN superlattice buffer layer on the properties of GaN films are investigated in this paper. One of the important roles of the superlattice is to release tensile strain between Si substrate and epilayer. Raman spectra show a substantial decrease of in-plane tensile strain in GaN layers by using AlN/GaN superlattice buffer layer. Moreover, TEM cross-sectional images show that the densities of both screw and edge dislocations are significantly reduced. The GaN films grown on Si with the superlattice buffer also have better surface morphology and optical properties.  相似文献   

5.
报道了在Si基上用简便的真空反应法制备出GaN外延层.光致发光光谱测试结果表明不同的生长温度和退火工艺会对GaN外延层的发光特性产生影响,在1050℃下生长的GaN外延层的发光强度高于其他温度下生长的发光强度,退火可以使GaN外延层的发光强度增强.二次离子质谱(SIMS)测试结果表明外延层中Ga和N分布均匀,在表面处Ga发生了偏聚,同时外延层中还存在Si,O等杂质,这使得外延层中背景电子浓度高达1.7×1018/cm3. SIMS测试结果还表明,在外延生长前采用 关键词:  相似文献   

6.
Temperature-dependent evolution of surface corrugation and the interface dislocation in In0.15Ga0.85As epilayer on GaAs(100) substrate grown by chemical beam epitaxy using unprecracked monoethylarsine have been investigated by atomic force microscope (AFM) and transmission electron microscopy (TEM). AFM images showed that the line direction of surface ridge changes from [011] to [0 1] with increasing temperature. However, TEM micrographs showed that dislocation networks are formed along both [011] and [0 1] directions at the interface. These results indicate that growth kinetics on the terrace and at surface steps generated by the dislocations play an important role in determining the direction of surface corrugation. We suggest that the temperature-dependent change of surface corrugation is caused by an anisotropic surface diffusion on the terrace and different sticking probability of adsorbates on the surface steps which were produced by interface misfit dislocation along the two orthogonal surface directions.  相似文献   

7.
Freeze-fracture/cytoplasmic maceration (FF/CM) to expose chloroplast ultrastructure for the SEM was developed for the green alga Enteromorpha intestinalis (Linnaeus) Link, and the results were compared with conventional TEM preparation. Preliminary investigations showed that the method used for higher plants was inadequate to expose algal chloroplast membrane detail, but, by decreasing the molarity of the buffer during maceration to make it more hypotonic relative to the tissue, sufficient cytoplasmic extraction was accomplished in 7 days using osmium tetroxide at a lower concentration than suggested in previous work. Post-maceration in tannic acid was omitted from the processing after the preliminary study to assess its effects on the final images, and consequently preparation time was shortened drammatically and now compares favourably with the time take to prepare material for the TEM. Ultrastructural integrity is preserved and is consistent with normal TEM preparations.  相似文献   

8.
Vertically coupled microring resonator channel-dropping filters are demonstrated in the GaInAsP-InP material system. These devices were fabricated without regrowth. In this method, low-loss single-mode waveguides are removed from the growth substrate and bonded to a GaAs transfer substrate with benzocyclobutene. This permits fabrication of vertically coupled waveguides on both sides of the epilayer. Optical quality facets are obtained by cleaving through the transfer substrate. Operation of single-mode, single-ring optical channel-dropping filters is demonstrated.  相似文献   

9.
Zhou  Y.  Hao  L.Y.  Zhu  Y.R.  Hu  Y.  Chen  Z.Y. 《Journal of nanoparticle research》2001,3(5-6):377-381
Polyacrylamide (PAM)–metal (M = gold, palladium) nanocomposites with metal nanoparticles homogeneously dispersed in the polymer matrix have been prepared via a novel ultraviolet irradiation technique at room temperature, which is based on the simultaneous occurrence of photo-reduction formation of the colloidal metal particles and photo-polymerization of the acrylamide (AM) monomer. The UV–vis absorption spectra and TEM were employed to characterize the M-PAM nanocomposites by different irradiation times. The average sizes of the colloidal gold and palladium particles dispersed in the nanocomposites were calculated by XRD patterns and TEM images. The present method may be extended to prepare other metal–polymer hybrid nanocomposite materials.  相似文献   

10.
The ordered multilayer adducts have been synthesized by electrostatic self-assembly between exfoliated sodium montmorillonite nanoplatelets and substituted CdS/CTAB cationic polyelectrolytes, in which sodium montmorillonite particles are exfoliated by means of extensive swelling and CdS/CTAB polyelectrolytes are obtained by sonicating CdS nanoparticles in CTAB water suspension. The build-up of the stable adducts with sandwich-like nanostructures has been demonstrated by X-ray diffraction (XRD) pattern. TEM cross-sectional images indicate that the nanocomposites are aligned parallel to form ordered structures. And UV–Vis and PL spectra show the presence of the inorganic functional components. It may be predicted that this self-assembly technique can be generalized to prepare other sandwich-like nanocomposites with desired optical, electro-optical, electronic, catalytic and magnetic properties.  相似文献   

11.
In this paper we propose a new method for measuring the thickness of the GaN epilayer, by using the ratio of the integrated intensity of the GaN epilayer X-ray diffraction peaks to that of the sapphire substrate ones. This ratio shows a linear dependence on the GaN epilayer thickness up to 2 μm. The new method is more accurate and convenient than those of using the relationship between the integrated intensity of GaN epilayer diffraction peaks and the GaN thickness. Besides, it can eliminate the absorption effect of the GaN epilayer.  相似文献   

12.
High-quality and nearly crack-free GaN epitaxial layer was obtained by inserting a single AlGaN interlayer between GaN epilayer and high-temperature AlN buffer layer on Si (111) substrate by metalorganic chemical vapor deposition. This paper investigates the effect of AlGaN interlayer on the structural properties of the resulting GaN epilayer. It confirms from the optical microscopy and Raman scattering spectroscopy that the AlGaN interlayer has a remarkable effect on introducing relative compressive strain to the top GaN layer and preventing the formation of cracks. X-ray diffraction and transmission electron microscopy analysis reveal that a significant reduction in both screw and edge threading dislocations is achieved in GaN epilayer by the insertion of AlGaN interlayer. The process of threading dislocation reduction in both AlGaN interlayer and GaN epilayer is demonstrated.  相似文献   

13.
Flexible GaN‐based light‐emitting diodes (LEDs) on polyethylene terephthalate (PET) substrates are demonstrated. The process uses commercial LEDs on patterned sapphire substrates, laser lift‐off (LLO), wet etching for additional surface roughening, and mounting of the freestanding LED on a PET substrate. Electrical and optical properties from the free‐standing LLO‐LEDs mounted on the flexible PET substrates were characterized. The process is scalable to large wafer diameters. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
This article deals with the development of an original sample preparation method for transmission electron microscopy (TEM) using focused ion beam (FIB) micromachining. The described method rests on the use of a removable protective shield to prevent the damaging of the sample surface during the FIB lamellae micromachining. It enables the production of thin TEM specimens that are suitable for plan view TEM imaging and analysis of the sample surface, without the deposition of a capping layer. This method is applied to an indented silicon carbide sample for which TEM analyses are presented to illustrate the potentiality of this sample preparation method.  相似文献   

15.
氮化铝单晶薄膜的ECR PEMOCVD低温生长研究   总被引:10,自引:0,他引:10       下载免费PDF全文
秦福文  顾彪  徐茵  杨大智 《物理学报》2003,52(5):1240-1244
采用电子回旋共振等离子体增强金属有机物化学气相沉积(ECR-PEMOCVD)技术,在c轴取向的蓝宝石即α Al2O3(0001)衬底上,以氮化镓(GaN)缓冲层和外延层作为初始层,分别以高纯氮气(N2)和三甲基铝(TMAl)为氮源和铝源低温生长氮化铝(AlN)薄膜.并利用反射高能电子衍射(RHEED)、原子力显微镜(AFM)和x射线衍射(XRD)等测量结果,研究了氢等离子体清洗、氮化和GaN初始层对六方AlN外延层质量的影响,从而获得解理性与α Al2O3衬底一致的六方相AlN单晶薄膜,其XRD半高宽为1 关键词: AlN 氢等离子体清洗 氮化 GaN  相似文献   

16.
Ultrasound-assisted cracking process to prepare MoS2 nanorods   总被引:2,自引:0,他引:2  
A simple ultrasound-assisted cracking process was applied to prepare high-crystallinity MoS2 nanorods using MoS2 micron particles as raw materials. The products were characterized by various techniques, including XRD, SEM, TEM and HRTEM. Systematic studies showed that acid treatment and ultrasound irradiation are both prerequisites for the preparation of ideal MoS2 nanorods. TEM images indicate that these nanorods have uniform morphology, with an average diameter of approximately 150 nm and length up to several microm. Based on the controlled experiments and observation on morphological changes, it is proposed that the activated layered MoS2 first exfoliate into sheets and further crack into smaller nanorods due to the strong mechanical agitation, shear forces, and micro-jets created by the ultrasound irradiation.  相似文献   

17.
1-y Cy epilayers were grown by MBE on (100) Si single-crystal substrates either directly on a dislocation-free or on a highly dislocated Si buffer layer. The orientation of the epilayers and their strain status were measured by double-crystal X-ray diffraction. Cross sections were prepared for TEM investigations. Epitaxial layers of about 130 nm thickness and carbon contents up to [%at.]1.38 grown on top of dislocation-free 1-μm-thick Si buffer layers were fully strained. In TEM bright field images, no dislocations were found. In order to introduce a high dislocation density in the Si buffer layer, the native oxide on the substrate was only partially removed prior to growing the Si buffer. A Si1-yCy film grown on top of that highly dislocated buffer layer showed a partial stress relaxation (a=5.429 Å<asi=5.431 Å). The large FWHM of transverse rocking scans through the Bragg reflection corresponding to the epilayer indicates a high defect density. TEM cross-section micrographs showed an extension of threading dislocations from the Si buffer layer into the Si1-yCy layer. Received: 22 April 1998/Accepted: 22 April 1998  相似文献   

18.
200 µm thick 4H‐SiC epilayers have been grown by chloride‐based chemical‐vapor deposition using methyltrichlorosilane (MTS) as single precursor. The very high crystalline quality of the grown epilayer is demonstrated by high resolution X‐Ray Diffraction rocking curve with a full‐width‐half‐maximum value of only 9 arcsec. The high quality of the epilayer is further shown by low temperature photoluminescence showing strong free exciton and nitrogen bound exciton lines. The very high crystalline quality achieved for the thick epilayer grown in just two hours at 1600 °C suggests that MTS is a suitable precursor molecule for SiC bulk growth. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We report on optimization of electron transparent GaN based specimens for transmission electron microscopy (TEM) and scanning TEM (STEM) studies by combining focused ion beam thinning and low-energy (≤500 eV) Ar-ion milling. Energy dependent ion milling effects on GaN based structures are investigated and the quality of ion milled samples is compared with that of specimens prepared by wet chemical etching. Defects formed during ion milling lead to amorphization of the specimen. The experimental results are compared with Monte-Carlo simulations using the SRIM (stopping and range of ions in matter) software. Specimen thickness was deduced from high-angle annular dark field STEM images by normalization of measured intensities with respect to the intensity of the scanning electron probe and comparison with multislice simulations in the frozen lattice approach. The results show that the thickness of the amorphous surface layer can be successfully reduced below 1 nm by low energy ion milling, leading to a homogeneous image contrast in TEM and STEM, so that good conditions for quantitative analysis can be achieved. For an ion energy of 400 eV the thickness measurements resulted in an etching rate of about 6-8 nm/min.  相似文献   

20.
This study investigates the influence of structure depth on image blurring of micrometres-thick films by experiment and simulation with a conventional transmission electron microscope (TEM). First, ultra-high-voltage electron microscope (ultra-HVEM) images of nanometer gold particles embedded in thick epoxy-resin films were acquired in the experiment and compared with simulated images. Then, variations of image blurring of gold particles at different depths were evaluated by calculating the particle diameter. The results showed that with a decrease in depth, image blurring increased. This depth-related property was more apparent for thicker specimens. Fortunately, larger particle depth involves less image blurring, even for a 10-μm-thick epoxy-resin film. The quality dependence on depth of a 3D reconstruction of particle structures in thick specimens was revealed by electron tomography. The evolution of image blurring with structure depth is determined mainly by multiple elastic scattering effects. Thick specimens of heavier materials produced more blurring due to a larger lateral spread of electrons after scattering from the structure. Nevertheless, increasing electron energy to 2 MeV can reduce blurring and produce an acceptable image quality for thick specimens in the TEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号