首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that the maximum number of edges boundingm faces in an arrangement ofn line segments in the plane isO(m 2/3 n 2/3+n(n)+nlogm). This improves a previous upper bound of Edelsbrunner et al. [5] and almost matches the best known lower bound which is (m 2/3 n 2/3+n(n)). In addition, we show that the number of edges bounding anym faces in an arrangement ofn line segments with a total oft intersecting pairs isO(m 2/3 t 1/3+n(t/n)+nmin{logm,logt/n}), almost matching the lower bound of (m 2/3 t 1/3+n(t/n)) demonstrated in this paper.Work on this paper by the first and fourth authors has been partially supported by Office of Naval Research Grant N00014-87-K-0129, by National Science Foundation Grants DCR-83-20085 and CCR-89-01484. Work by the first author has also been supported by an AT&T Bell Laboratories Ph.D. scholarship at New York University and by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), a National Science Foundation Science and Technology Center (NSF-STC88-09648). Work by the second author has been supported by NSF under Grants CCR-87-14565 and CCR-89-21421. Work by the fourth author has additionally been supported by grants from the U.S.-Israeli Binational Science Foundation, the NCRD (the Israeli National Council for Research and Development) and the Fund for Basic Research in Electronics, Computers and Communication, administered by the Israeli National Academy of Sciences.  相似文献   

2.
M. D. Atkinson 《Order》1990,7(1):23-25
An algorithm requiring O(n 2) arithmetic operations for computing the number of linear extensions of a poset whose covering graph is a tree is given.This research was partially funded by the National Science and Engineering Research Council of Canada under Grant Number A4219.  相似文献   

3.
A graph is calledquasi-planar if it can be drawn in the plane so that no three of its edges are pairwise crossing. It is shown that the maximum number of edges of a quasi-planar graph withn vertices isO(n).Work on this paper by Pankaj K. Agarwal, Boris Aronov and Micha Sharir has been supported by a grant from the U.S.-Israeli Binational Science Foundation. Work on this paper by Pankaj K. Agarwal has also been supported by NSF Grant CCR-93-01259, by an Army Research Office MURI grant DAAH04-96-1-0013, by an NYI award, and by matching funds from Xerox Corporation. Work on this paper by Boris Aronov has also been supported by NSF Grant CCR-92-11541 and by a Sloan Research Fellowship. Work on this paper by János Pach, Richard Pollack, and Micha Sharir has been supported by NSF Grants CCR-91-22103 and CCR-94-24398. Work by János Pach was also supported by Grant OTKA-4269 and by a CUNY Research Award. Work by Richard Pollack was also supported by NSF Grants CCR-94-02640 and DMS-94-00293. Work by Micha Sharir was also supported by NSF Grant CCR-93-11127, by a Max-Planck Research Award, and by grants from the Israel Science Fund administered by the Israeli Academy of Sciences, and the G.I.F., the German-Israeli Foundation for Scientific Research and Development. Part of the work on this paper was done during the participation of the first four authors in the Special Semester on Computational and Combinatorial Geometry organized by the Mathematical Research Institute of Tel Aviv University, Spring 1995.  相似文献   

4.
The Maximum Cardinality Search (MCS) algorithm visits the vertices of a graph in some order, such that at each step, an unvisited vertex that has the largest number of visited neighbours becomes visited. A maximum cardinality search ordering (MCS-ordering) of a graph is an ordering of the vertices that can be generated by the MCS algorithm. The visited degree of a vertex v in an MCS-ordering is the number of neighbours of v that are before v in the ordering. The visited degree of an MCS-ordering ψ of G is the maximum visited degree over all vertices v in ψ. The maximum visited degree over all MCS-orderings of graph G is called its maximum visited degree. Lucena [A new lower bound for tree-width using maximum cardinality search, SIAM J. Discrete Math. 16 (2003) 345-353] showed that the treewidth of a graph G is at least its maximum visited degree.We show that the maximum visited degree is of size O(logn) for planar graphs, and give examples of planar graphs G with maximum visited degree k with O(k!) vertices, for all kN. Given a graph G, it is NP-complete to determine if its maximum visited degree is at least k, for any fixed k?7. Also, this problem does not have a polynomial time approximation algorithm with constant ratio, unless P=NP. Variants of the problem are also shown to be NP-complete.In this paper, we also propose some heuristics for the problem, and report on an experimental analysis of them. Several tiebreakers for the MCS algorithm are proposed and evaluated. We also give heuristics that give upper bounds on the value of the maximum visited degree of a graph, which appear to give results close to optimal on many graphs from real life applications.  相似文献   

5.
In this paper we show that (n) variables are needed for first-order logic with counting to identify graphs onn vertices. Thek-variable language with counting is equivalent to the (k–1)-dimensional Weisfeiler-Lehman method. We thus settle a long-standing open problem. Previously it was an open question whether or not 4 variables suffice. Our lower bound remains true over a set of graphs of color class size 4. This contrasts sharply with the fact that 3 variables suffice to identify all graphs of color class size 3, and 2 variables suffice to identify almost all graphs. Our lower bound is optimal up to multiplication by a constant becausen variables obviously suffice to identify graphs onn vertices.Research supported by NSF grant CCR-8709818.Research supported by NSF grant CCR-8805978 and Pennsylvania State University Research Initiation grant 428-45.Research supported by NSF grants DCR-8603346 and CCR-8806308.  相似文献   

6.
L. A. Székely 《Combinatorica》1984,4(2-3):213-218
LetH be a set of positive real numbers. We define the geometric graphG H as follows: the vertex set isR n (or the unit circleS 1) andx, y are joined if their distance belongs toH. We define the measurable chromatic number of geometric graphs as the minimum number of classes in a measurable partition into independent sets. In this paper we investigate the difference between the notions of the ordinary and measurable chromatic numbers. We also prove upper and lower bounds on the Lebesgue upper density of independent sets.  相似文献   

7.
V. King 《Combinatorica》1990,10(1):53-59
The complexity of a digraph property is the number of entries of the adjacency matrix which must be examined by a decision tree algorithm to recognize the property in the worst case, Aanderaa and Rosenberg conjectured that there is a constant such that every digraph property which is monotone (not destroyed by the deletion of edges) and nontrivial (holds for some but not all digraphs) has complexity at leastv 2 wherev is the number of nodes in the digraph. This conjecture was proved by Rivest and Vuillemin and a lower bound ofv 2/4–o(v 2) was subsequently found by Kahn, Saks, and Sturtevant. Here we show a lower bound ofv 2/2–o(v 2). We also prove that a certain class of monotone, nontrivial bipartite digraph properties is evasive (requires that every entry in the adjacency matrix be examined in the worst case).  相似文献   

8.
This paper is concerned with numerical integration on the unit sphere Sr of dimension r≥2 in the Euclidean space ℝr+1. We consider the worst-case cubature error, denoted by E(Qm;Hs(Sr)), of an arbitrary m-point cubature rule Qm for functions in the unit ball of the Sobolev space Hs(Sr), where s>, and show that The positive constant cs,r in the estimate depends only on the sphere dimension r≥2 and the index s of the Sobolev space Hs(Sr). This result was previously only known for r=2, in which case the estimate is order optimal. The method of proof is constructive: we construct for each Qm a `bad' function fm, that is, a function which vanishes in all nodes of the cubature rule and for which Our proof uses a packing of the sphere Sr with spherical caps, as well as an interpolation result between Sobolev spaces of different indices.  相似文献   

9.
The interval number i(G) of a graph G with n vertices is the lowest integer m such that G is the intersection graph of some family of sets I1,…,In with every Ii being the union of at most m real intervals. In this article a lower bound for i(G) is proved followed by some considerations about the construction of graphs that are critical with respect to the interval number.  相似文献   

10.
This paper considers an approach to generating uniformly distributed pseudo-random numbers which works well in serial applications but which also appears particularly well-suited for application on parallel processing systems. Additive Congruential Random Number (ACORN) generators are straightforward to implement for arbitrarily large order and modulus; if implemented using integer arithmetic, it becomes possible to generate identical sequences on any machine.  相似文献   

11.
The synchronization problem is investigated for the class of locally strongly transitive automata introduced in Carpi and D?Alessandro (2009) [9]. Some extensions of this problem related to the notions of stable set and word of minimal rank of an automaton are studied. An application to synchronizing colorings of aperiodic graphs with a Hamiltonian path is also considered.  相似文献   

12.
Let G be a connected graph of order n. The algebraic connectivity of G is the second smallest eigenvalue of the Laplacian matrix of G. A dominating set in G is a vertex subset S such that each vertex of G that is not in S is adjacent to a vertex in S. The least cardinality of a dominating set is the domination number. In this paper, we prove a sharp upper bound on the algebraic connectivity of a connected graph in terms of the domination number and characterize the associated extremal graphs.  相似文献   

13.
We show that the spectral radius ρ(D) of a digraph D with n vertices and c2 closed walks of length 2 satisfies Moreover, equality occurs if and only if D is the symmetric digraph associated to a -regular graph, plus some arcs that do not belong to cycles. As an application of this result, we construct new sharp upper bounds for the low energy of a digraph, which extends Koolen and Moulton bounds of the energy to digraphs.  相似文献   

14.
It is well known that the ratio bound is an upper bound on the stability number α(G) of a regular graph G. In this note it is proved that, if G is a graph whose edge is a union of classes of a symmetric association scheme, the Delsarte’s linear programming bound can alternatively be stated as the minimum of a set of ratio bounds. This result follows from a recently established relationship between a set of convex quadratic bounds on α(G) and the number ?′(G), a well known variant of the Lovász theta number, which was introduced independently by Schrijver [A. Schrijver, A comparison of the Delsarte and Lovász bounds, IEEE Trans. Inform. Theory 25 (1979) 425-429] and McEliece et al. [R.J. McEliece, E.R. Rodemich, H.C. Rumsey Jr, The Lovász bound and some generalizations, J. Combin. Inform. System Sci. 3 (1978) 134-152].  相似文献   

15.
We give the lower bound on the number of sharp shadow-boundaries of convexd-polytopes (or unbounded convex polytopal sets) withn facets. The polytopes (sets) attaining these bounds are characterized. Additionally, our results will be transferred to the dual theory.The research work of the first author was (partially) supported by Hungarian National Foundation for Scientific Research, grant no. 1812.  相似文献   

16.
Digital planarity is defined by digitizing Euclidean planes in the three-dimensional digital space of voxels; voxels are given either in the grid-point or the grid-cube model. The paper summarizes results (also including most of the proofs) about different aspects of digital planarity, such as supporting or separating Euclidean planes, characterizations in arithmetic geometry, periodicity, connectivity, and algorithmic solutions. The paper provides a uniform presentation, which further extends and details a recent book chapter in [R. Klette, A. Rosenfeld, Digital Geometry—Geometric Methods for Digital Picture Analysis, Morgan Kaufmann, San Francisco, 2004].  相似文献   

17.
Parallel computation offers a challenging opportunity to speed up the time consuming enumerative procedures that are necessary to solve hard combinatorial problems. Theoretical analysis of such a parallel branch and bound algorithm is very hard and empirical analysis is not straightforward because the performance of a parallel algorithm cannot be evaluated simply by executing the algorithm on a few parallel systems. Among the difficulties encountered are the noise produced by other users on the system, the limited variation in parallelism (the number of processors in the system is strictly bounded) and the waste of resources involved: most of the time, the outcomes of all computations are already known and the only issue of interest is when these outcomes are produced.We will describe a way to simulate the execution of parallel branch and bound algorithms on arbitrary parallel systems in such a way that the memory and cpu requirements are very reasonable. The use of simulation has only minor consequences for the formulation of the algorithm.  相似文献   

18.
The color of a complex number is defined as the number of vertices of the convex hull of powers of that number. This induces a coloring of the unit disk. The structure of the set of points where the color changes is investigated here. It is observed that there is a connection between this fractal set and some family of trinomial equations. Three algorithms for coloring the unit disk are described, the last one (related to the Farey sequence) arising out of a conjecture. This conjecture is formulated and proved in this presentation.  相似文献   

19.
A set cover for a set S is a collection C of special subsets whose union is S. Given covers A and B for two sets, the set-cover difference problem is to construct a new cover for the elements covered by A but not B. Applications include testing equivalence of set covers and maintaining a set cover dynamically. In this paper, we solve the set-cover difference problem by defining a difference operation A-B, which turns out to be a pseudocomplement on a distributive lattice. We give an algorithm for constructing this difference, and show how to implement the algorithm for two examples with applications in computer science: face covers on a hypercube, and rectangle covers on a grid. We derive an upper bound on the time complexity of the algorithm, and give upper and lower bounds on complexity for face covers and rectangle covers.  相似文献   

20.
In this paper, we prove irreducible offsets to rational plane curves are hyperelliptic in general and compute the genus of them. We also give a criterion for deciding the irreducibility of offsets to rational plane curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号