首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The experimentally determined energies and rotational constants of the vibrational levels v = 0–20 of the Ion-Pair states Ω = 0+, Ω = 1 of the I2, Br2, IBr, and ICl molecules are modeled. The model used includes three diabatic states, which correlate to X+(3P, 1D) + Y(1S0). These states are coupled by the spin-orbit interaction, which is assumed to be independent of the internuclear distance. For IBr and ICl, as well as for the ungerade states of I2 and Br2, satisfactory results are obtained. The model is less applicable to the gerade states of I2 and Br2, which is possibly results from the retainment of the asymptotic J A J B coupling of the angular momenta at equilibrium internuclear distances.  相似文献   

2.
The magnetization M(H) in the superconducting state, dc magnetic susceptibility χ(T) in the normal state, and specific heat C(T) near the superconducting transition temperature T c have been measured for a series of fine-crystalline YBa2Cu3O y samples having nearly optimum values of y = 6.93 ± 0.3 and T c = (91.5 ± 0.5) K. The samples differ only in the degree of nanoscale structural inhomogeneity. The characteristic parameters of superconductors (the London penetration depth and the Ginzburg–Landau parameter) and the thermodynamic critical field H c are determined by the analysis of the magnetization curves M(H). It is found that the increase in the degree of nanoscale structural inhomogeneity leads to an increase in the characteristic parameters of superconductors and a decrease in H c(T) and the jump of the specific heat ΔC/T c. It is shown that the changes in the physical characteristics are caused by the suppression of the density of states near the Fermi level. The pseudogap is estimated by analyzing χ(T). It is found that the nanoscale structural inhomogeneity significantly enhances and probably even creates the pseudogap regime in the optimally doped high-T c superconductors.  相似文献   

3.
Temperature dependences of specific heat Cp(T) and coefficient of thermal expansion ;(T) for Na0.95Li0.05NbO3 sodium-lithium niobate ceramic samples are investigated in the temperature range of 100–800 K. The Cp(T) and α(T) anomalies at T3 = 310 ± 3 K, T2 = 630 ± 8 K, and T1 = 710 ± 10 K are observed, which correspond to the sequence of phase transitions N ? Q ? S(R) ? T2(S). The effect of heat treatment of the samples on the sequence of structural distortions was established. It is demonstrated that annealing of the samples at 603 K leads to splitting of the anomaly corresponding to the phase transition QR/S in two anomalies. After sample heating to 800 K, the only anomaly is observed in both the Cp(T) and ;(T) dependence. Possible mechanisms of the observed phenomena are discussed.  相似文献   

4.
O. P. Yushchenko  V. F. Kurshetsov  A. P. Filin  S. A. Akimenko  A. V. Artamonov  A. M. Blik  V. V. Brekhovskikh  V. S. Burtovoy  S. V. Donskov  A. V. Inyakin  A. M. Gorin  G. V. Khaustov  S. A. Kholodenko  V. N. Kolosov  A. S. Konstantinov  V. M. Leontiev  V. A. Lishin  M. V. Medynsky  Yu. V. Mikhailov  V. F. Obraztsov  V. A. Polyakov  A. V. Popov  V. I. Romanovsky  V. I. Rykalin  A. S. Sadovsky  V. D. Samoilenko  V. K. Semenov  O. V. Stenyakin  O. G. Tchikilev  V. A. Uvarov  V. A. Duk  S. N. Filippov  E. N. Guschin  Yu. G. Kudenko  A. A. Khudyakov  V. I. Kravtsov  A. Yu. Polyarush  V. N. Bychkov  G. D. Kekelidze  V. M. Lysan  B. Zh. Zalikhanov 《JETP Letters》2018,107(3):139-142
Recent results from OKA setup concerning form factor studies in Ke3 decay are presented. About 5.25 M events obtained for decays of 17.7 GeV/cK+ are selected for the analysis. The linear and quadratic slopes for the decay form factor f+(t) are measured: λ'+ = 2.95 ± 0.022 ± 0.018 × 10 -2 for the linear slope fit and λ+ = 2.611 ± 0.035 ± 0.028 × 10 -2, λ"+ = 1.91 ± 0.19 ± 0.14 × 10 -3 for the quadratic one. The scalar and tensor contributions are compatible with zero. Several alternative parametrizations are tried: the Pole fit parameter is found to be M V = 891 ± 3 MeV; the parameter of the dispersive parametrization is measured to be Λ+ = 2.458 ± 0.018 × 10-2.  相似文献   

5.
The temperature dependences of the intense magnetocaloric effect ΔT AD(T, H) and the heat capacity C p (T) of the (La0.4Eu0.6)0.7Pb0.3MnO3 manganite are directly measured using adiabatic calorimetry. The experimental dependences ΔT AD(T) are in satisfactory agreement with those calculated from the data on the behavior of the magnetization. The factors responsible for the absence of an anomaly in the experimental temperature dependence of the heat capacity C p (T) in the range of the magnetic phase transition are discussed.  相似文献   

6.
Crystals of the KPb2Br5compound are investigated using polarized light microscopy and calorimetry. The birefringence and the angle of rotation of the optical indicatrix are measured in the temperature range 270–620 K. It is found that the KPb2Br5 crystal undergoes a first-order ferroelastic phase transition at temperatures T0↑ = 519.5 K and T0↓ = 518.5 K with a change in the enthalpy ΔH = 1300 ± 200 J/mol. This transition is accompanied by both twinning and the symmetry change mmm ? P21/c. It is revealed that the angle of rotation of the optical indicatrix exhibits an unusual behavior under variations in the temperature due to a strong temperature dependence of the birefringence.  相似文献   

7.
The temperature behavior of the EPR spectra of the Gd3+ impurity center in single crystals of SrMoO4 in the temperature range T = 99–375 K is studied. The analysis of the temperature dependences of the spin Hamiltonian b 2 0 (T) = b2(F) + b2(L) and P 2 0 (T) = P2(F) + P2(L) (for Gd157) describing the EPR spectrum and contributing to the Gd3+ ground state splitting ΔE is carried out. In terms of the Newman model, the values of b2(L) and P2(L) depending on the thermal expansion of the static lattice are estimated; the b2(F) and P2(F) spin-phonon contributions determined by the lattice ion oscillations are separated. The analysis of b 2 0 (T) and P 2 0 (T) is evidence of the positive contribution of the spin-phonon interaction; the model of the local oscillations of the impurity cluster with close frequencies ω describes well the temperature behavior of b2(F) and P2(F).  相似文献   

8.
The anionic conductivity of HoF3 single crystals with a β-YF3 structure (orthorhombic crystal system, space group Pnma) is investigated over a wide range of temperatures (323–1073 K). The unit cell parameters of HoF3 crystals are as follows: a=0.6384±0.0009 nm, b=0.6844±0.0009 nm, and c=0.4356±0.0005 nm. It is revealed that the conductivity anisotropy of the HoF3 crystals is insignificant over the entire temperature range covered. The crossover from one mechanism of ion transfer to another mechanism is observed near the critical temperature Tc≈620 K. The activation enthalpy of electrical conduction is found to be ΔH1=0.744 eV at T<Tc and ΔH2=0.43 eV at T>Tc. The fluorine vacancies are the most probable charge carriers in HoF3 crystals. The fluorine ionic conductivities at temperatures of 323, 500, and 1073 K are equal to 5×10?10, 5×10?6, and 2×10?3 S cm?1, respectively.  相似文献   

9.
Corrections of order α 5 and α 6 are calculated for muonic hydrogen in the fine-structure interval ΔE fs = E(2P 3/2) − E(2P 1/2) and in the hyperfine structure of the 2P 1/2-and 2P 3/2-wave energy levels. The resulting values of ΔE fs = 8352.08 μeV, Δ hfs(2P 1/2) = 7819.80 μeV, and Δ hfs(2P 3/2) = 3248.03 μeV provide reliable guidelines in performing a comparison with relevant experimental data and in more precisely extracting the experimental value of the (2P–2S) Lamb shift in the muonic-hydrogen atom. Original Russian Text ? A.P. Martynenko, 2008, published in Yadernaya Fizika, 2008, Vol. 71, No. 1, pp. 126–136.  相似文献   

10.
We report on the magnetostriction of hexagonal HoMnO3 and YMnO3 single crystals in a wide range of applied magnetic fields (up to H = 14 T) at all possible combinations of the mutual orientations of magnetic field H and magnetostriction ΔL/L. The measured ΔL/L(H, T) data agree well with the magnetic phase diagram of the HoMnO3 single crystal reported previously by other authors. It is shown that the nonmonotonic behavior of magnetostriction of the HoMnO3 crystal is caused by the Ho3+ ion; the magnetic moment of the Mn3+ ion parallel to the hexagonal crystal axis. The anomalies established from the magnetostriction measurements of HoMnO3 are consistent with the phase diagram of these compounds. For the isostructural YMnO3 single crystal with a nonmagnetic rare-earth ion, the ΔL/L(H, T) dependences are described well by a conventional quadratic law in a wide temperature range (4–100 K). In addition, the magnetostriction effect is qualitatively estimated with regard to the effect of the crystal electric field on the holmium ion.  相似文献   

11.
The electron spin resonance has been measured for the first time both in the paramagnetic phase of the metallic GdB6 antiferromagnet (TN = 15.5K) and in the antiferromagnetic state (T < TN). In the paramagnetic phase below T* ~ 70 K, the material is found to exhibit a pronounced increase in the resonance linewidth and a shift in the g-factor, which is proportional to the linewidth Δg(T) ~ ΔH(T). Such behavior is not characteristic of antiferromagnetic metals and seems to be due to the effects related to displacements of Gd3+ ions from the centrosymmetric positions in the boron cage. The transition to the antiferromagnetic phase is accompanied by an abrupt change in the position of resonance (from μ0H0 ≈ 1.9 T to μ0H0 ≈ 3.9 T at ν = 60 GHz), after which a smooth evolution of the spectrum occurs, resulting eventually in the formation of the spectrum consisting of four resonance lines. The magnetic field dependence of the frequency of the resonant modes ω0(H0) obtained in the range of 28–69 GHz is well interpreted within the model of ESR in an antiferromagnet with the easy anisotropy axis ω/γ = (H 0 2 +2HAHE)1/2, where HE is the exchange field and HA is the anisotropy field. This provides an estimate for the anisotropy field, HA ≈ 800 Oe. This value can result from the dipole?dipole interaction related to the mutual displacement of Gd3+ ions, which occurs at the antiferromagnetic transition.  相似文献   

12.
The electronic structure of crystalline phenakite Be2SiO4 is investigated using x-ray emission spectroscopy (XES) (Be K α XES, Si L 2, 3 XES, O K α XES) and x-ray absorption spectroscopy (XAS) (Be 1s XAS, Si 2p XAS, O 1s XAS). The energy band structure is calculated by the ab initio full-potential linearized augmented-plane-wave (FLAPW) method. The total and partial densities of states and the dispersion curves for the Be2SiO4 compound are presented. It is shown that the top of the valence band and the bottom of the conduction band of the Be2SiO4 compound are predominantly formed by the oxygen 2p states. According to the results obtained, the electron transition with the lowest energy supposedly can occur at the center of the Brillouin zone. The effective masses of electrons (0.5m e ) and holes (3.0m e ) for the Be2SiO4) compound are estimated.  相似文献   

13.
The structure and dielectric characteristics of the (1000 nm)SrTiO3 spacer in a (001)SrRuO3 ‖ (001)SrTiO3 ‖ (001)La0.67Ca0.33MnO3 trilayer heterostructure grown on a (001)(LaAlO3)0.3+(Sr2AlTaO6)0.7 substrate have been studied. Both oxide electrodes, as well as the strontium titanate layer, were cube-on-cube epitaxially grown. The unit cell parameter in the SrTiO3 layer measured in the substrate plane (3.908±0.003 Å) practically coincided with that determined along the normal to the substrate surface (3.909±0.003 Å). The temperature dependence of the real part of the permittivity ?′ of the SrTiO3 layer in the range 70–180 K fits the relation (?′)?1 ~ ? 0 ?1 C 0 ?1 (T-T C ) well, where C0 and TC are the Curie constant and the Curie-Weiss temperature, respectively, for bulk strontium titanate crystals and ?0 is the free-space permittivity. The data obtained on the temperature dependence of the permittivity of SrTiO3 films enabled us to evaluate the effective depth of electric field penetration into the manganite electrode (L e ≈ 0.5 nm) and the corresponding capacitance (C e ≈1×10?6 F/cm2) of the interface separating the (001)SrTiO3 layer from the (001)La0.67Ca0.33MnO3 bottom electrode.  相似文献   

14.
We perform the updated constraints on the Hubble constant H 0 by using the model-independent method, Gaussian processes. Utilizing the latest 30 cosmic chronometer measurements, we obtain H 0 = 67.38 ± 4.72 km s?1 Mpc?1, which is consistent with the Planck 2015 and Riess et al. analysis at 1σ confidence level. Different from the results of Busti et al. by only using 19 H(z) measurements, our reconstruction results of H(z) and the derived values of H 0 are insensitive to the concrete choice of covariance functions of Matérn family.  相似文献   

15.
This paper reports on the results of complex investigations into the structural, thermodynamic, and dilatometric properties of the C60 dimerized phase prepared under compression of a C60 fullerite at a pressure up to 8 GPa and a temperature of 290 K. It is demonstrated that the dimerized phase has a face-centered cubic structure with a lattice parameter a=14.02±0.05 Å. The dimeric structure of the studied sample is confirmed by x-ray diffraction analysis. According to the dilatometric data, the volume jump observed in the vicinity of the orientational transition for the dimerized phase is estimated to be approximately 30 times less than that for the C60 fullerite. The temperature dependence of the heat capacity of the (C60)2 crystalline dimer is examined using precision adiabatic vacuum calorimetry under normal pressure in the temperature range from T → 0 K to 340 K. The results obtained are used in the calculations of thermodynamic functions, namely, the heat capacity C p 0 (T), the enthalpy H0(T)-H0(0), the entropy S0(T), and the Gibbs function G0(T)-H0(0). The fractal dimension D is determined as a function of the heat capacity. The standard entropy of the formation of the (C60)2 crystalline dimer from a simple compound (graphite) at T=298.15 K and normal pressure is calculated.  相似文献   

16.
The characteristics of Li+-ion conductivity σdc of structural γ modifications of Li3R2(PO4)3 compounds (R = Fe, Sc) existing in the superionic state have been investigated by impedance spectroscopy. The type of structural framework [R2P3O12]3- affects the σdc value and the σdc activation enthalpy in these compounds. The ion transport activation enthalpy in γ-Li3R2(PO4)3Hσ = 0.31 ± 0.03 eV) is lower than in γ-Li3Fe2(PO4)3Hσ = 0.36 ± 0.03 eV). The conductivity of γ-Li3Fe2(PO4)3dc = 0.02 S/cm at 573 K) is twice as high as that of γ-Li3R2(PO4)3. A decrease in temperature causes a structural transformation of Li3R2(PO4)3 from the superionic γ modification (space group Pcan) through the intermediate metastable β modification (space group P21/n) into the “dielectric” α modification (space group P21/n). Upon cooling, σdc for both phosphates decreases by a factor of about 100 at the superionic TSIC transition. In Li3Fe2(PO4)3 σdc gradually decreases in the temperature range TSIC = 430–540 K, whereas in Li3R2(PO4)3 σdc undergoes a jump at TSIC = 540 ± 25 K. Possible crystallochemical factors responsible for the difference in the σdc and ΔHσ values and the thermodynamics and kinetics of the superionic transition for Li3R2(PO4)3 are discussed.  相似文献   

17.
The effect of uniaxial mechanical pressure σ m ≤ 150 bar on the spectral (300–800 nm) dependence of the birefringerence Δn i and refractive indices n i of (NH4)2SO4 crystals has been investigated. It is shown that the dispersion of n i (λ) and Δn i (λ) is normal and sharply increases with approach to the absorption edge. It is established that uniaxial pressure does not change the character of the dispersions dn i / and dΔn i / and only affects their magnitudes. It is shown that the increase in the refractive indices under uniaxial stress is mainly due to the increase in the refraction caused by the increase in the band gap and long-wavelength shift of the UV absorption band maximum.  相似文献   

18.
Layered single crystals of the TlGa0.5Fe0.5Se2 alloy in a dc electric field at temperatures ranging from 128 to 178 K are found to possess variable-range-hopping conduction along natural crystal layers through states localized in the vicinity of the Fermi level. The parameters characterizing the electrical conduction in the TlGa0.5Fe0.5Se2 crystals are estimated as follows: the density of states near the Fermi level NF = 2.8 × 1017 eV?1 cm?3, the spread in energy of these states ΔE = 0.13 eV, the average hopping length Rav = 233 Å, and the concentration of deep-lying traps N t = 3.6 × 1016 cm?3.  相似文献   

19.
An orientational phase transition in C60 crystals was studied by differential scanning calorimetry with the highest resolution provided by this method. The temperature dependence of the specific heat ΔC p (T) was found to have a double peak in the range 250–270 K. An analysis of the temperature dependences of heat capacity in the region of the peaks revealed that the lower temperature peak follows a power law of the type ΔC p = A/(T?T0)1/2 characteristic of order-disorder second-order phase transitions, while the high-temperature peak can be identified with a diffuse Λ-shaped first-order phase transition.  相似文献   

20.
The population of excited states of the hydrogen atom in an afterglow plasma produced by a pulsed discharge in helium (40 Torr) with a small admixture of hydrogen ([H2] ≈ 1012 cm?3) has been studied spectroscopically. The contribution from electron-ion recombination Γ 3 rec to the production rate of atoms H(n = 3) has been separated. On the basis of an experiment in which the response of the spectral line intensities to the perturbation of the electron temperature in the afterglow phase was observed, the dependence Γ 3 rec (T e T e ?(0.9–1.0) has been obtained in the region kT e = 0.026–0.064 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号