首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prospective cardiac gating during MRI is hampered by electromagnetic induction from the rapidly switched imaging gradients into the ECG detection circuit. This is particularly challenging in small animal MRI, as higher heart rates combined with a smaller myocardial mass render routine ECG detection challenging. We have developed an open-hardware system that enables continuously running MRI scans to be performed in conjunction with cardio-respiratory gating such that the relaxation-weighted steady state magnetisation is maintained throughout the scan. This requires that the R-wave must be detected reliably even in the presence of rapidly switching gradients, and that data previously acquired that were corrupted by respiratory motion re-acquired. The accurately maintained steady-state magnetisation leads to an improvement in image quality and removes alterations in intensity that may otherwise occur throughout the cardiac cycle and impact upon automated image analysis. We describe the hardware required to enable this and demonstrate its application and robust performance using prospectively cardio-respiratory gated CINE imaging that is operated at a single, constant TR. Schematics, technical drawings, component listing and assembly instructions are made publicly available.  相似文献   

2.
李硕  王磊  朱艳春  杨洁  谢耀钦  付楠  王乙  高嵩 《中国物理 B》2016,25(12):128703-128703
Conventional multiple breath-hold two-dimensional(2D) balanced steady-state free precession(SSFP) presents many difficulties in cardiac cine magnetic resonance imaging(MRI). Recently, a self-gated free-breathing three-dimensional(3D) SSFP technique has been proposed as an alternative in many studies. However, the accuracy and effectiveness of selfgating signals have been barely studied before. Since self-gating signals are crucially important in image reconstruction, a systematic study of self-gating signals and comparison with external monitored signals are needed.Previously developed self-gated free-breathing 3D SSFP techniques are used on twenty-eight healthy volunteers. Both electrocardiographic(ECG) and respiratory bellow signals are also acquired during the scan as external signals. Self-gating signal and external signal are compared by trigger and gating window. Gating window is proposed to evaluate the accuracy and effectiveness of respiratory self-gating signal. Relative deviation of the trigger and root-mean-square-deviation of the cycle duration are calculated. A two-tailed paired t-test is used to identify the difference between self-gating and external signals. A Wilcoxon signed rank test is used to identify the difference between peak and valley self-gating triggers.The results demonstrate an excellent correlation(P = 0, R 0.99) between self-gating and external triggers. Wilcoxon signed rank test shows that there is no significant difference between peak and valley self-gating triggers for both cardiac(H = 0, P 0.10) and respiratory(H = 0, P 0.44) motions. The difference between self-gating and externally monitored signals is not significant(two-tailed paired-sample t-test: H = 0, P 0.90).The self-gating signals could demonstrate cardiac and respiratory motion accurately and effectively as ECG and respiratory bellow. The difference between the two methods is not significant and can be explained. Furthermore, few ECG trigger errors appear in some subjects while these errors are not found in self-gating signals.  相似文献   

3.
Purpose: The aim of this pilot study was to evaluate a magnetically labeled water perfusion imaging technique as a non-contrast-enhanced approach to demonstrate the uterine artery, its branches, and to assess the cervical uterine blood flow in healthy volunteers and in patients with advanced uterine cervical carcinoma (FIGO IIB-IVA).Methods and Materials: Seven healthy volunteers (mean age, 29 years) and twenty-two patients (mean age, 52 years) with advanced cancer of the uterine cervix (FIGO IIB-IVA) were prospectively examined by magnetically labeled water perfusion imaging at different inversion delay times (300–900 ms). The magnetic resonance imaging (MRI) findings of all patients were matched to the findings of contrast-enhanced dynamic MRI and multiple biopsies (n = 5) and/or surgical whole mount specimens (n = 17), which were available in all patients.Results: The uterine artery was well visualized with short inversion delay times of 300–500 ms. It was characterized as single or multiple helical loops before dividing into its intracervical branches. The intracervical branching was observed at inversion delay times of 500–700 ms. With longer inversion delay times, arterial signal enhancement disappeared and cervical tissue enhancement was noted. Enhancement of benign tissue was observed at inversion delay times of 1100–1700 ms and in malignant tissue at shorter inversion delay times of 900–1300 ms. The maximum of this diffuse signal enhancement of benign tissue was seen at inversion delay times of 1500 ms (1100-1700 ms) in malignant tissue at significantly (p < 0.5) shorter inversion delay times of 1100 ms (900–1300 ms).Conclusion: Our preliminary results show that the vascular supply and blood flow of the normal uterine cervix and of advanced cervical cancer can be assessed by magnetically labeled water perfusion imaging and that malignant cervical tissue is earlier and stronger perfused than normal cervical tissue.  相似文献   

4.
A rapid version of PEPI (pi-echo planar imaging) velocimetry has been implemented, enabling a velocity image, at microscopic resolution, to be acquired in less than 1 s. The velocity map was reconstructed using the phase information from the ratio of two PEPI images, one obtained with a velocity-encoding filter applied prior to the imaging sequence and the other image without. The acquisition time for each image was about 80 ms and the two complete image acquisitions were acquired in one shot in 500 ms. This rapid velocimetry sequence gave a good representation of laminar pipe flow. It has also been used to examine extensional flow in a biaxial extension in which the transient extension takes about 3 s.  相似文献   

5.
The advent of short TR gradient-echo imaging has made it possible to acquire cine images of the heart with conventional whole body MRI scanners. In this paper, technical details of the data collection and image reconstruction process for cine MRI using retrospective cardiac gating are presented. Specifically, the following issues are discussed: data sorting and interpolation; time resolution; motion compensation and phase information; the type of steady state sequence including optimal flip angle; respiratory motion and correction; and the potential of 3D imaging.  相似文献   

6.
Signal variation in diffusion-weighted images (DWIs) is influenced both by thermal noise and by spatially and temporally varying artifacts, such as rigid-body motion and cardiac pulsation. Motion artifacts are particularly prevalent when scanning difficult patient populations, such as human infants. Although some motion during data acquisition can be corrected using image coregistration procedures, frequently individual DWIs are corrupted beyond repair by sudden, large amplitude motion either within or outside of the imaging plane. We propose a novel approach to identify and reject outlier images automatically using local binary patterns (LBP) and 2D partial least square (2D-PLS) to estimate diffusion tensors robustly. This method uses an enhanced LBP algorithm to extract texture features from a local texture feature of the image matrix from the DWI data. Because the images have been transformed to local texture matrices, we are able to extract discriminating information that identifies outliers in the data set by extending a traditional one-dimensional PLS algorithm to a two-dimension operator. The class-membership matrix in this 2D-PLS algorithm is adapted to process samples that are image matrix, and the membership matrix thus represents varying degrees of importance of local information within the images. We also derive the analytic form of the generalized inverse of the class-membership matrix. We show that this method can effectively extract local features from brain images obtained from a large sample of human infants to identify images that are outliers in their textural features, permitting their exclusion from further processing when estimating tensors using the DWIs. This technique is shown to be superior in performance when compared with visual inspection and other common methods to address motion-related artifacts in DWI data. This technique is applicable to correct motion artifact in other magnetic resonance imaging (MRI) techniques (e.g., the bootstrapping estimation) that use univariate or multivariate regression methods to fit MRI data to a pre-specified model.  相似文献   

7.
The multishot echo planar imaging sequence was often used in the high-resolution diffusion measurements. However, it is susceptible to motion artifacts because of the requirements of combining the raw data from different acquisitions into one complete k-space data set. Conventional solutions used cardiac gating but greatly extended the total acquisition time. Here we propose a selective averaging algorithm based on the information in the navigator echoes. The data were sampled continuously without cardiac gating. Contributions contaminated by motion were detected by a thresholding algorithm and were discarded during postprocessing. The data were then averaged in the modulus or complex format. Diffusion tensor imaging (DTI) data with isotropic spatial resolution were acquired in phantom as well as from two normal volunteers. The information in the navigator echoes proved to be a good indicator for the extent of motion contamination. Differences were noticed between modulus and complex averaging in DTI quantification, but both showed reduced artifact and improved signal-to-noise ratio.  相似文献   

8.
ObjectiveDiffusion-weighted imaging (DWI) in the liver suffers from signal loss due to the cardiac motion artifact, especially in the left liver lobe. The purpose of this work was to improve the image quality of liver DWI in terms of cardiac motion artifact reduction and achievement of black-blood images in low b-value images.Material and methodsTen healthy volunteers (age 20–31 years) underwent MRI examinations at 1.5 T with a prototype DWI sequence provided by the vendor. Two diffusion encodings (i.e. waveforms), monopolar and flow-compensated, and the b-values 0, 20, 50, 100, 150, 600 and 800 s/mm2 were used. Two Likert scales describing the severity of the pulsation artifact and the quality of the black-blood state were defined and evaluated by two experienced radiologists. Regions of interest (ROIs) were manually drawn in the right and left liver lobe in each slice and combined to a volume of interest (VOI). The mean and coefficient of variation were calculated for each normalized VOI-averaged signal to assess the severity of the cardiac motion artifact. The ADC was calculated using two b-values once for the monopolar data and once with mixed data, using the monopolar data for the small and the flow-compensated data for the high b-value. A Wilcoxon rank sum test was used to compare the Likert scores obtained for monopolar and flow-compensated data.ResultsAt b-values from 20 to 150 s/mm2, unlike the flow-compensated diffusion encoding, the monopolar encoding yielded black blood in all images with a negligible signal loss due to the cardiac motion artifact. At the b-values 600 and 800 s/mm2, the flow-compensated encoding resulted in a significantly reduced cardiac motion artifact, especially in the left liver lobe, and in a black-blood state. The ADC calculated with monopolar data was significantly higher in the left than in the right liver lobe.ConclusionIt is recommendable to use the following mixed waveform protocol: Monopolar diffusion encodings at small b-values and flow-compensated diffusion encodings at high b-values.  相似文献   

9.
Spin echo images of the carotid arteries in longitudinal view have been obtained by selection of oblique imaging planes. Blood flow within the lumen in the region of the carotid bifurcation has been visualized through the use of cardiac gating during end diastole. Using a surface coil placed about the mandible, high resolution images [(0.75 mm)2 per pixel) were obtained with scan times typically equal to 9 min and image data matrix equal to 256 × 256. Images obtained with this technique of MRI carotid angiography demonstrate blood flow phenomenon as well as vascular anatomy.  相似文献   

10.
唐远河  吴勇 《物理学报》2013,62(21):214210-214210
基于透射式液晶的电光特性, 设计和开发了一套基于液晶和数字处理器 (digital signal processor, DSP)的强光局部选通智能网络摄像机系统. 系统基于透射式液晶和DSP开发板(核心芯片TMS320DM642)技术, 利用DSP控制液晶驱动, 实现液晶单个像素透过率的控制, 将强光的透过率下降2个数量级; 该系统利用另一块DSP 开发板(核心芯片TMS320DM6437)实现将处理后的强光视频信号进行网络传输与实时存储到PC机中, 实现选通智能网络摄像. 该系统24 h所需存储硬盘容量8.648 Gbit, 所用液晶的延迟时间25.5 ms, 电路延迟时间17 μs. 在光强大于2.2×105 lx的强光照射下, 得到系统的选通视频实验结果. 结果表明该系统能解决强光下普通CCD高动态范围摄像机出现局部曝光过度而不能分辨细节的成像问题, 实现了CCD的高动态范围成像. 关键词: 液晶 DSP 光强透过率 高动态范围  相似文献   

11.
PurposeTo evaluate the performance of combined integrated slice-by-slice shimming and readout-segmented EPI (irsEPI) for diffusion-weighted MR imaging (DWI) of the neck at 3 Tesla.MethodsThis study was approved by the local ethics committee. An anthropometric phantom of the head/neck region incorporating compartments with different diffusivities was constructed. In vivo measurements were performed in 10 healthy volunteers. DWI of the phantom and volunteers was performed on a 3 Tesla MR scanner using single shot EPI (sEPI), a prototype single shot EPI with integrated slice-by-slice shimming (iEPI), readout segmented EPI (rsEPI) and a prototype readout segmented EPI with integrated shimming irsEPI. Apparent diffusion coefficients (ADC) and spatial distortions of phantom compartments were quantified. For phantom and volunteer measurements, the presence of geometric distortions, signal losses, ghosting artifacts as well as overall image quality were visually assessed on a 4-point scale by two radiologists in consensus. In addition, failure of fat saturation was assessed in volunteer data.ResultsQuantification of ADC within the phantom compartments was comparable using the different EPI techniques without significant variations. Using irsEPI, spatial distortions in phase-encoding direction were markedly reduced compared to iEPI, rsEPI and especially sEPI. irsEPI yielded significantly better overall image quality compared to sEPI, iEPI and rsEPI in phantom data as well as volunteer measurements. Markedly reduced geometric distortions and signal loss as well as better fat saturation were observed using irsEPI.ConclusionThe use of irsEPI significantly improves image quality and reduces artifacts caused by magnetic field inhomogeneities in EPI based DWI of the head/neck at 3 Tesla.  相似文献   

12.
Development of x-ray phase contrast imaging applications with a laboratory scale source have been limited by the long exposure time needed to obtain one image. We demonstrate, using the Betatron x-ray radiation produced when electrons are accelerated and wiggled in the laser-wakefield cavity, that a high-quality phase contrast image of a complex object (here, a bee), located in air, can be obtained with a single laser shot. The Betatron x-ray source used in this proof of principle experiment has a source diameter of 1.7 μm and produces a synchrotron spectrum with critical energy E(c)=12.3±2.5 keV and 10? photons per shot in the whole spectrum.  相似文献   

13.
The increasing availability of rodent models of human cardiovascular disease has led to a need to translate noninvasive imaging techniques such as magnetic resonance imaging (MRI) from the clinic to the animal laboratory. The aim of this study was to develop phantoms simulating the short-axis view of left ventricular motion of rats and mice, thus reducing the need for live animals in the development of MRI. Cylindrical phantoms were moulded from polyvinyl alcohol (PVA) Cryogel and attached via stiff water-filled tubing to a gear pump. Pulsatile distension of the phantoms was effected by suitable programming of the pump. Cine MRI scanning was carried out at 7 T and compared with in vivo rodent cardiac imaging. Suitable pulsatile performance was achieved with phantoms for which the PVA material had been subjected to two freeze-thaw cycles, resulting in T1 and T2 relaxation time constants of 1656±124 ms and 55±10 ms, respectively. For the rat phantom operating at 240 beats per min (bpm), the dynamic range of the outer diameter was from 10.3 to 12.4 mm with the wall thickness varying between 1.9 and 1.2 mm. Corresponding figures for the mouse phantom at 480 bpm were outer diameter range from 5.4 to 6.4 mm and wall thickness from 1.5 to 1.2 mm. Dynamic cardiac phantoms simulating rodent left ventricular motion in the short-axis view were successfully developed and compared with in vivo imaging. The phantoms can be used for future development work with reduced need of live animals.  相似文献   

14.
Segmented echoplanar imaging (EPI) is a potentially valuable acquisition method for neonatal diffusion-weighted imaging (DWI) due to the lower acoustic noise levels as well as reduced blurring and distortion associated with it, as compared with single-shot EPI. Reduced acoustic noise may be important for the safety of neonates. However, little information regarding the efficacy of segmented EPI motion correction schemes is available for the neonatal population. We quantitatively assessed the efficacy of a postprocessing technique for motion artifact reduction involving phase correction by nonlinear optimization, alone and in combination with a novel method of utilizing a second data set (referred to as segment data swapping). These methods were applied to three-directional eight-segment echoplanar DW images obtained from 13 sedated neonates and to nine-directional DW images from 3 unsedated neonates. For comparison, the efficacy of the nonlinear optimization method was also evaluated in four adults. Motion correction efficacy was quantified using the motion artifact-to-signal ratio (ASR). The median, 70th percentile and 90th percentile ASR values obtained from neonatal three-directional DWI using nonlinear optimization alone were 2.8%, 4.6% and 9.6%, respectively. Efficacy improved (P<.005), particularly in dealing with the images most difficult to correct, when the phase correction by numerical optimization was combined with segment data swapping (median ASR=1.9%, 70th percentile ASR=2.7%, 90th percentile ASR=4.3%). Similar results were obtained for nine-directional diffusion tensor imaging. Nonlinear optimization alone applied to adult images showed significantly (P<.001) lower ASR values (median ASR=0.9%, 70th percentile ASR=2.1%, 90th percentile ASR=4.1%), demonstrating the greater challenge in DWI of neonates with segmented EPI. In conclusion, phase correction by nonlinear optimization provides effective motion correction for neonatal DW eight-segment EPI, especially when used in conjunction with segment data swapping.  相似文献   

15.
Measurement of cardiac T2 has emerged as an important tool to noninvasively quantify cardiac iron concentration in order to detect preclinical evidence of toxic levels and titrate chelation therapy. However, there exists variation among practitioners in cardiac T2 measurement methods. This study examines the impact of different imaging parameters and data analysis techniques on the calculated cardiac R2 (1/T2) in patients at risk for cardiac siderosis. The study group consisted of 36 patients with thalassemia syndromes who had undergone clinical magnetic resonance imaging assessment of cardiac siderosis using a standardized protocol and who were selected to yield a broad range of cardiac R2 values. Cardiac R2 measurements were performed on a 1.5-T scanner using an electrocardiogram-gated, segmented, multiecho gradient echo sequence obtained in a single breath-hold. R2 was calculated from the signal intensity versus echo time data in the ventricular septum on a single midventricular short-axis slice. There was good agreement between R2 measured with a blood suppression prepulse (black blood technique) and without (mean difference 6.0 ± 10.7 Hz). The black blood technique had superior within-study reproducibility (R2 mean difference 1.6 ± 8.6 Hz versus 2.7 ± 14.6 Hz) and better interobserver agreement (R2 mean difference 3.4 ± 8.2 Hz versus 8.3 ± 16.5 Hz). With the same minimum echo time, the use of small (1.0 ms) versus large (2.2 ms) echo spacing had minimal impact on cardiac R2 (mean difference 0.3 ± 8.7 Hz). The application of a region-of-interest-based versus a pixel-based data analysis also had little effect on cardiac R2 calculation (mean difference 8.4 ± 6.9 Hz). With black blood images, fitting the signal curve to a monoexponential decay or to a monoexponential decay with a constant offset yielded similar R2 values (mean difference 3.4 ± 8.1 Hz). In conclusion, the addition of a blood suppression prepulse for cardiac R2 measurement yields similar R2 values and improves reproducibility and interobserver agreement. The findings regarding other variations may be helpful in establishing a broadly accepted imaging and analysis technique for cardiac R2 calculation.  相似文献   

16.
A probe using a solenoid coil tilted 45 degrees off-axis has been used to study the 31P NMR relaxation characteristics of the resonances arising from phosphorus metabolites in rats in vivo. T1, T1 rho and T2 values have been determined for phosphocreatine and ATP in leg muscle. The ratio of 31P T1(1700ms) to T2(12ms) for ATP was in excess of 200:1 compared with a ratio of 5:1 for 1H T1:T2. Of major significance was the observation that T2 values for phosphocreatine (230ms) were markedly longer than T2 values for ATP (12ms). Thus by use of appropriate delay times in spin echo sequences ATP signals can be nulled, and discrete 31P imaging of phosphocreatine in muscle may be possible provided the overall signal-to-noise is satisfactory.  相似文献   

17.
Diffusion weighted magnetic resonance imaging (DWI) has been mostly acquired using single-shot echo-planar imaging (ss EPI) to minimize motion induced artifacts. The spatial resolution, however, is inherently limited in ss EPI especially for abdominal imaging, even with the advances in parallel imaging. A novel method of reduced Field of View ss EPI (rFOV ss EPI) has achieved high resolution DWI in human carotid artery, spinal cord with reduced blurring and higher spatial resolution than conventional ss EPI, but it has not been used to pancreas imaging. In the work, comparisons between the full FOV ss-DW EPI and rFOV ss-DW EPI in image qualities and ADC values of pancreatic tumors and normal pancreatic tissues were performed to demonstrate the feasibility of pancreatic high resolution rFOV DWI. There were no significant differences in the mean ADC values between full FOV DWI and rFOV DWI for the 17 subjects using b = 600 s/mm2 (P = 0.962). However, subjective scores of image quality was significantly higher at rFOV ss DWI (P = 0.008 and 0.000 for b-value = 0 s/mm2 and 600 s/mm2 respectively). The spatial resolution of DWI for pancreas was increased by a factor of over 2.0 (from almost 3.0 mm/pixel to 1.25 mm/pixel) using rFOV ss EPI technique. Reduced FOV ss EPI can provide good DW images and is promising to benefit applications for pancreatic diseases.  相似文献   

18.
Diffusion-weighted imaging in epilepsy   总被引:1,自引:0,他引:1  
Diffusion-weighted imaging (DWI) is a relatively new magnetic resonance imaging (MRI) technique that can be used to probe the microenvironment of water. Contrast in DWI depends on properties different from traditional T1 and T2 constrast, and is derived from the translational motion of water molecules. Since it is reasonable to think that a change in the microenvironment of water might be reflected in a change in water diffusion characteristics, the quantitative assessment of the (apparent) diffusion coefficient ADCw may represent a unique means of assessing tissue status. DWI has already shown great utility in the study of cerebral ischemia in animal models and has proved useful in the early identification of cerebral ischemia in patients. More recent reports have indicated a potential for DWI in studying epilepsy. Here, we briefly review some of what is known about the measurement of ADCw in ischemia and compare these results with what has recently been reported for epilepsy. In this manner we hope to better understand the underlying mechanisms behind changes in water diffusion associated with specific pathologies.  相似文献   

19.
K. Tada  N. Karasawa   《Optics Communications》2009,282(19):3948-3952
Pulse trains of fundamental soliton pulses with different center wavelengths and delay times from a photonic crystal fiber were generated and used as Stokes optical pulses in coherent anti-Stokes Raman scattering (CARS) spectroscopy. The pulse trains were created by shaping optical pulses with a pulse shaper and their waveforms were measured by a cross-correlation frequency-resolved optical gating method. By the use of pulse trains, the time required for obtaining broadband CARS signals was reduced to be about one third compared with our previous study without using pulse trains. With this setup, broadband CARS signals between 500 and 3100 cm−1 of a single polystyrene bead sample have been measured and the most of the Raman peaks in this frequency range of samples have been observed clearly.  相似文献   

20.
Promising recent investigations have shown that breast malignancies exhibit restricted diffusion on diffusion-weighted imaging (DWI) and may be distinguished from normal tissue and benign lesions in the breast based on differences in apparent diffusion coefficient (ADC) values. In this study, we assessed the influence of intravoxel fat signal on breast diffusion measures by comparing ADC values obtained using a diffusion-weighted single shot fast spin-echo sequence with and without fat suppression. The influence of breast density on ADC measures was also evaluated. ADC values were calculated for both tumor and normal fibroglandular tissue in a group of 21 women with diagnosed breast cancer. There were systematic underestimations of ADC for both tumor and normal breast tissue due to intravoxel contribution from fat signal on non–fat-suppressed DWI. This ADC underestimation was more pronounced for normal tissue values (mean difference=40%) than for tumors (mean difference=27%, P<.001) and was worse in women with low breast tissue density vs. those with extremely dense breasts (P<.05 for both tumor and normal tissue). Tumor conspicuity measured by contrast-to-noise ratio was significantly higher on ADC maps created with fat suppression and was not significantly associated with breast density. In summary, robust fat suppression is important for accurate breast ADC measures and optimal lesion conspicuity on DWI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号