首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
电子动力学及相干辐射的强场调控与阿秒探测是强场物理与阿秒物理领域中的重大课题。通过同步探测阿秒辐射和太赫兹辐射,文章作者首次实现了阿秒精度的太赫兹产生动力学的探测与控制,表明阿秒物理与太赫兹技术的结合有助于深入理解强场驱动下太赫兹产生机制和电子再散射动力学,展示了利用双色场控制电子波包相干相位,实现超快物理过程强场调控的可能。文章作者所提出的精确刻画太赫兹时域瞬时电场方案,有助于推动极化敏感的太赫兹谱学研究。可以预期,阿秒脉冲与太赫兹源技术不会局限于原子分子物理领域。实现阿秒物理与太赫兹技术之间的互为抽运与探测,将会极大地推动化学、材料科学、凝聚态物理等领域的高时空分辨的超快动力学探测。  相似文献   

2.
强场电离是超快强激光与物质相互作用时发生的基本物理过程。强场驱动原子分子的电离电子动力学过程发生在一个光学振荡周期以内,是在阿秒时间尺度上研究电子超快动力学的典范。不仅如此,强场驱动下的超短电子束还为探测原子分子的结构及其超快动力学提供了重要的技术手段。文章首先简要阐述了超快强光场中原子分子电离的基本物理图像,在此基础上,介绍了近年来基于强场电离电子开展的超快过程研究的几个例子,最后简要讨论了强场电离研究的未来可能发展方向。  相似文献   

3.
在过去20年里,激光技术的发展使阿秒科学成为一个新的研究领域,可为量子少体超快演化过程的研究提供新视角.当前实验室中制备的阿秒脉冲以孤立脉冲或脉冲串的形式被广泛应用于实验研究中,其超快变化的光场允许人们操控和跟踪电子在原子尺度的运动,实现对亚飞秒时间尺度电子动力学的实时追踪.本综述聚焦于阿秒科学的重要组成部分,即原子分子超快动力学研究的进展.首先介绍阿秒脉冲的产生和发展,主要包括高次谐波原理和孤立阿秒脉冲分离方法;然后系统地介绍阿秒脉冲在原子分子超快动力学研究中的应用,包括光电离时间延迟、阿秒电荷迁移和非绝热分子动力学等方面;最后对阿秒脉冲在原子分子超快动力学研究中的应用进行总结和展望.  相似文献   

4.
随着强激光技术的快速发展, 在物质与激光相互作用下,实验上发现了很多新奇的物理现象。这些现象成功地被各种理论模型和数值模拟所解释和证明。一种很重要的现象就是所谓的高次谐波产生:在原子和分子与强激光相互作用时, 能够放出能量为基频光子能量几倍到几百倍的大能量光子。在实验上, 人们已经可以通过合成截止频率附近的几个谐波来产生脉冲长度在阿秒量级的激光脉冲(1阿秒=10-18秒)。阿秒脉冲的获得开启了超快科学一个全新的领域:人们可以在电子运动的自然时间尺度上去探测和操控原子分子内部电子的运动,这是继飞秒科学后人们操控微观世界物质运动的又一大飞跃。在本文中,我们就最近几年我们在理论上所开展的阿秒物理做一个简单的综述,重点强调利用阿秒光去控制电子的电离动力学以及探测分子内部电子运动.  相似文献   

5.
利用阿秒激光追踪和控制原子分子内部电子的运动(英文)   总被引:1,自引:0,他引:1  
随着强激光技术的快速发展,在物质与激光相互作用下,实验上发现了很多新奇的物理现象。这些现象成功地被各种理论模型和数值模拟所解释和证明。一种很重要的现象就是所谓的高次谐波产生:在原子和分子与强激光相互作用时,能够放出能量为基频光子能量几倍到几百倍的大能量光子。在实验上,人们已经可以通过合成截止频率附近的几个谐波来产生脉冲长度在阿秒量级的激光脉冲(1阿秒=10~(-18)s)。阿秒脉冲的获得开启了超快科学一个全新的领域:人们可以在电子运动的自然时间尺度上去探测和操控原子分子内部电子的运动,这是继飞秒科学后人们操控微观世界物质运动的又一大飞跃。在本文中,我们就最近几年我们在理论上所开展的阿秒物理做一个简单的综述,重点强调利用阿秒光去控制电子的电离动力学以及探测分子内部电子运动。  相似文献   

6.
葛愉成 《物理学报》2005,54(6):2653-2661
介绍阿秒超紫外线(XUV)激发惰性气体原子产生光电子并在强激光电场中运动的半经典近似 方法,以及同时、直接、全面地测量阿秒XUV脉冲频率和强度时间分布的光电子能谱相位确定法. 采用飞秒超短脉冲激光和XUV间的交叉关联技术,从不同激光强度下、与激光线性极化方向成0°或180°方向上测得的光电子能量积分谱,可以重建XUV的频率和强度时间分布. XUV脉冲时间宽度的测量范围从1/4到1/2激光振荡周期,时间分辨率取决于激光束和XUV脉冲之间的相对延时控制精度和光路抖动时间. 所述方法可用于在阿秒尺度上的超快速测量,以及有关电子在原子和分子中运动的超快速动力学过程研究. 关键词: 阿秒测量 光电子能谱 相位确定法 超紫外线 频率和强度时间分布  相似文献   

7.
陈高 《物理学报》2022,(5):166-172
孤立阿秒脉冲因可以跟踪和控制原子及分子内电子的运动过程而备受关注.本文从理论上开展了氦原子在3束飞秒脉冲激光组合场辐照下产生的高次谐波和阿秒脉冲辐射的研究.组合激光场由16 fs/1600 nm,15 fs/1100 nm和5.3 fs/800 nm的钛宝石脉冲构成.与前两束脉冲合成的双色场产生谐波谱相比,附加钛宝石脉冲的三色场产生的高次谐波发射谱呈现出高转换效率及宽带超连续特性,超连续谱范围覆盖从230—690次谐波,傅里叶变换后实现了128 as高强度孤立短脉冲的产生.该结果归因于合成的三色场呈现出高功率及少周期的中红外飞秒脉冲激光特性,可以有效控制原子电离以及复合发生在中红外飞秒脉冲的一个有效光学周期内.  相似文献   

8.
超短激光脉冲的出现为人们研究原子分子内电子的超快动力学过程提供了重要的技术手段。强激光诱导原子分子的光电离过程是光诱导物理过程的基石,也是目前强场物理领域的前沿热点之一。本文重点综述了双波长圆偏振光场中分子电离动力学的研究进展。首先,介绍了研究强场分子电离动力学的半经典模型,给出了电离电子波包的相位和振幅分布。然后,介绍了利用双波长圆偏振光场测量H2分子和CO分子的电离动力学的研究,发现电离电子的振幅结构以及隧穿后电子受到的长程库仑势都会影响电子的动力学过程。此外,电子波包的相位结构也会包含在光电子的发射角中,这个初始相位编码了电子吸收光子而电离过程中的时域信息。最后,对新型阿秒钟在分子光电离过程中的应用进行了总结,并展望了未来复杂分子体系的应用前景。  相似文献   

9.
阿秒脉冲测量的研究进展   总被引:1,自引:0,他引:1  
霍义萍  曾志男  李儒新 《物理》2004,33(12):907-912
对于发生在原子范围内的电子动力学过程的观测需要阿秒量级的时间分辨率.理论和实验研究都已证明,用周期量级超短脉冲直接泵浦的高次谐波过程可以产生阿秒脉冲序列甚至单个的阿秒脉冲,将阿秒脉冲用于测量超快动力学过程之前先要对阿秒脉冲本身性质做出描述,传统的自相关方法和互相关方法不能直接推广到阿秒量级超短脉冲的测量.文章详细介绍了近几年发展起来的阿秒脉冲测量方法,分析了它们的分辨极限和局限性.  相似文献   

10.
本文提出了一个在双色激光场上叠加低频电场来拓宽高次谐波谱平台区域,从而获得孤立40阿秒脉冲的方案.计算中,我们针对氯原子数值求解了一维含时薛定谔方程,并结合电子的经典回碰动能随时间分布图以及时频分析图,分析了低频电场对高次谐波谱产生过程的影响.计算结果表明,该方案可以有效的拓宽谐波谱的平台区域.通过叠加适当阶数的谐波谱,我们得到了孤立40阿秒脉冲.  相似文献   

11.
本文提出了一个在双色激光场上叠加低频电场来拓宽高次谐波谱平台区域,从而获得孤立40阿秒脉冲的方案.计算中,我们针对氦原子数值求解了一维含时薛定谔方程,并结合电子的经典回碰动能随时间分布图以及时频分析图,分析了低频电场对高次谐波谱产生过程的影响.计算结果表明,该方案可以有效的拓宽谐波谱的平台区域.通过叠加适当阶数的谐波谱,我们得到了孤立40阿秒脉冲.  相似文献   

12.
孙佳楠  尹燕奔  陈高 《光学学报》2023,(13):294-302
利用强场近似理论开展了正交偏振双色场与氦原子相互作用产生高次谐波和阿秒脉冲的理论研究。正交偏振双色场由少周期的4 fs钛宝石驱动脉冲激光和与它偏振方向垂直的8 fs倍频控制脉冲构成。研究发现,通过合理选择两束脉冲之间的相对相位,能够控制高次谐波发射过程中长、短电子轨道的选择。当相对相位调整为1.2π时,平台谐波主要来自短轨道电子的贡献,由于其运动时间短、波包扩散少,且没有与长轨道电子谐波产生干涉,沿驱动脉冲电场方向的高次谐波谱具有较高强度和较小调制幅度的超连续平台区,通过对第120次到第180次超连续谐波进行傅里叶变换,可产生脉宽为54 as的高强度孤立阿秒脉冲。所提方案对组合脉冲相对相位的选取要求并不严苛,在0.3π的变化范围内皆可获得脉宽较短的孤立阿秒脉冲,同时控制脉冲电场强度的变化对上述数值模拟结果的影响也很小。  相似文献   

13.
对超快过程的探测和控制决定了人类在微观层面认识和改造物质世界的能力.阿秒光源可完成对组成物质的电子运动及其关联效应进行超高时空分辨的探测和操控,为人类认识微观世界提供了全新手段,被认为是激光科学史上最重要的里程碑之一.世界主要科技强国都将阿秒科学列为未来10年重要的科技发展方向.利用强激光与物质相互作用产生高次谐波是突破飞秒极限实现高亮度阿秒脉冲辐射的重要方案之一,成为了近年来激光等离子体领域的研究热点.本文聚焦强激光与等离子体相互作用中的高次谐波和阿秒脉冲辐射,主要介绍其产生机制、研究进展和前沿应用,并对未来的发展趋势和创新突破进行展望.  相似文献   

14.
在超短激光脉冲的激发下,原子分子会发生强场阈上电离、高次谐波辐射等高阶非线性的强场物理过程.通过对这些过程中产生的光、电子信号的分析,可以实现对原子分子结构及其超快动力学过程同时具有埃量级空间分辨和亚飞秒量级时间分辨的探测,为人们在极端条件下研究微观世界的物质结构和基本物理过程提供了强大的工具.自2004年发展起来的基于分子高次谐波的分子轨道层析成像方法,可以实现对分子轨道波函数本身的高时空分辨层析成像.这将帮助人们更加深刻地认识化学反应过程的物理本质.本文介绍了分子轨道层析成像的理论方法,并综述了十余年来分子轨道层析成像理论的新进展.  相似文献   

15.
王向欣  李琳  李澜 《光子学报》2014,40(3):379-382
宽带极紫外连续谱是获得阿秒脉冲的重要途径,在此过程中传播效应是影响宽带极紫外连续谱产生的重要因素,本文针对传播效应对宽带极紫外连续谱的影响,采用慢变波近似的一阶传播方程,研究了传播过程对双色场周期量级激光脉冲产生宽带连续谱及其对应的单个阿秒脉冲的影响.通过分析不同聚焦位置和介质长度的传播过程,发现介质位于焦点之后有利于产生连续谱,同时随着介质长度的变长,虽然单个阿秒脉冲峰值强度有所提高,但是产生的阿秒脉冲宽度也会增加.进一步的分析表明,在特定的双色场延迟优化下,传播效应不仅使得阿秒脉冲强度增强,还可以获得与单原子模型下具有同样脉宽的单个阿秒脉冲,而不会因为传播效应导致阿秒脉冲宽度变宽.  相似文献   

16.
强激光场下原子分子的多光子电离和隧道电离是极端条件下的量子现象,也是强场光物理中基本的动力学过程.测量原子分子在强激光场中的超快动力学对探索微观粒子内部结构和相互作用有重要意义.本文简述强场光电离中的基本概念和现象,并介绍强激光与原子分子相互作用研究中的重要仪器——冷靶反冲离子动量成像谱仪(COLT-RIMS),最后展...  相似文献   

17.
 近年来在可见光谱范围内已经把激光脉冲压缩到接近一个光学周期(2~3 fs)的物理极限,几fs的时间分辨精度可以描述分子化学反应过程,但是要探测远小于可见光周期的电子跃迁过程则需要阿秒(as)量级的光脉冲。利用脉冲间具有相同载波包络相位的阿秒脉冲序列能把可见光波段的光学频率梳向极紫外波段扩展;利用电子和离子碰撞复合过程短于一个光周期这个时间窗,通过测量激光场椭圆极化率对电子轨迹的微扰实现了as精度的分辨率;通过测量碰撞复合过程中的高能电子的辐射谱可以重构阿秒X光脉冲以及探测强场下束缚态和连续态电子动力学。  相似文献   

18.
利用数值求解原子在强激光场中的含时薛定谔方程,对一维氦原子处于两色红外组合场中产生的高次谐波进行了研究,研究发现,在组合场驱动下,谐波谱的截止位置可以拓展到Ip+5.7Up,从而得到脉宽较短的多个阿秒脉冲,通过改变两束激光的相位延迟,最终得到了33.8as的单个脉冲.进一步利用小波变换分析了阿秒脉冲的发射特征,发现单个阿秒脉冲实现是对电子长路径抑制的结果.  相似文献   

19.
通过系统研究氮分子高次谐波产生过程中的电子超快动力学过程,实验上发现在中红外飞秒强激光场驱动下高次谐波谱的截止区附近存在清晰的谐波谱极小值.进一步研究表明谐波谱极小值对应的光子能量强烈依赖于驱动激光脉冲的光强和波长,而与分子取向角无关,由此推断该极小值来源于氮分子最高占据分子轨道和次最高占据分子轨道产生的高次谐波之间的相消干涉.本研究结果将对极端强场条件下多轨道电子超快动力学研究起到积极推动作用.  相似文献   

20.
利用数值求解原子在强激光场中的含时薛定谔方程,对一维氦原子处于两色红外组合场中产生的高次谐波进行了研究,研究发现,在组合场驱动下,谐波谱的截止位置可以拓展到 ,从而得到脉宽较短的多个阿秒脉冲,通过改变两束激光的相位延迟,最终得到了33.8as的单个脉冲。进一步利用小波变换分析了阿秒脉冲的发射特征,发现单个阿秒脉冲实现是对电子长路径抑制的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号