首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In situ high pressure energy-dispersive x-ray synchrotron radiation diffraction and resistance experiments are carried out on CaCuMn6O12. Its crystal structure is stable in the measured pressure range. The equation of state of CaCuMn6O12 is obtained from the V/Vo - P relationship (V and Vo are the volumes at pressure P and at atmosphere). The bulk modulus Bo is calculated based on the Birch-Murnaghan equation. Low temperature x-ray diffraction shows no phase transition occurring down to 160K.  相似文献   

2.
We report a comprehensive high-pressure study on the monoclinic TIFeSe_2 single crystal,which is an antiferromagnetic jnsulator with quasi-one-dimensional crystal structure at ambient pressure.It is found that TIFeSe_2 undergoes a pressure-induced structural transformation from the monoclinic phase to an orthorhombic structure above P_c≈13 GPa,accompanied with a large volume collapse of ΔV/V_0=8.3%.In the low-pressure monoclinic phase,the insulating state is easily metallized at pressures above 2 GPa;while possible superconductivity with T_c~(onset)~2 K is found to emerge above 30 GPa in the high-pressure phase.Such a great tunability of TIFeSe_2 under pressure indicates that the ternary AFeSe_2 system(A=Tl,K,Cs,Rb) should be taken as an important platform for explorations of interesting phenomena such as insulator-metal transition,dimensionality crossover,and superconductivity.  相似文献   

3.
Using the four-probe method, we investigate the electrical conductivity of Cu3N under high pressure with the diamond anvil cell. Cu3N is a semiconductor at ambient pressure showing a band gap about l eV. With the application of quasi-hydrostatic pressures, its resistance decreases dramatically over five orders of magnitude from ambient to 9 GPa. The compound became a metal at pressure about 5.5 GPa, which is in well agreement with the recent first principle calculation.  相似文献   

4.
In situ Raman spectroscopy and x-ray diffraction measurements are used to explore the structural stability of CaB_6 at high pressures and room temperature. The results show no evidence of structural phase transitions up to at least 40 GPa.The obtained equation of state with smooth pressure dependencies yields a zero-pressure isothermal bulk modulus B0=170(5) GPa, which agrees well with the previous measurements. The frequency shifts for A_(1g), Eg, and T_(2g) vibrational modes of polycrystalline CaB_6 are obtained with pressure uploading. As the pressure increases, all the vibration modes have smooth monotonic pressure dependence. The Gr¨uneisen parameter of Eg modes is the largest, indicating its largest dependence on the volume of a crystal lattice.  相似文献   

5.
Physics of the Solid State - The effect of hydrostatic pressure on phase transitions in lead hafnate (PbHfO3) has been studied by the methods of X-ray diffraction and X-ray diffuse scattering. The...  相似文献   

6.
We perform the in-situ conductivity measurement on BaF2 at high pressure using a microcircuit fabricated on a diamond anvil cell. The results show that BaF2 initially exhibits the electrical property of an insulator at pressure below 25 GPa, it transforms to a wide energy gap semiconductor at pressure from 25 to 30 GPa, and the conductivity increases gradually with increasing pressure from 30 GPa. However, the metallization predicted by theoretical calculation at 30-33 GPa cannot be observed. In addition, we measure the temperature dependence of the conductivity at several pressures and obtain the relationship between the energy gap and pressure. Based on the experimental data, it is predicted that BaF2 would transform to a metal at about 87 GPa and ambient temperature. The conductivity of BaF2 reaches the order of 10^-3Ω^-1 cm^-1 at 37 GPa and 2400 K, the superionic conduction is not observed during the experiments, indicating the application of pressure elevates greatly the transition temperature of the superionic conduction.  相似文献   

7.
The electrical conductivity of powdered LiCr 0.35 Mn0.65O2 is measured under high pressure up to 26.22 GPa in the temperature range 300-413 K by using a diamond anvil cell. It is found that both conductivity and activation enthalpy change discontinuously at 5.36 GPa and 21.66 GPa. In the pressure range 1.10-5.36 GPa, pressure increases the activation enthalpy and reduces the carrier scattering, which finally leads to the conductivity increase. In the pressure ranges 6.32-21.66 GPa and 22.60-26.22 GPa, the activation enthalpy decreases with pressure increasing, which has a positive contribution to electrical conductivity increase. Two pressure-induced structural phase transitions are found by in-situ x-ray diffraction under high pressure, which results in the discontinuous changes of conductivity and activation enthalpy.  相似文献   

8.
Cubic BN Sintered with A1 under High Temperature and High Pressure   总被引:1,自引:0,他引:1       下载免费PDF全文
Sintering of cubic boron nitride (cBN) with addition of A1 is carried out in the temperature range 1300-1500℃ and under the pressure 5.5 GPa. When sintered at 1300℃, a weak diffractive peak of hexagonal BN (hBN) is observed in the Al-cBN sample, indicating the transformation from cBN to hBN. No nitrides or borides of A1 are observed, which indicated that A1 does not react with cBN obviously. When the sintering temperature is increased to 1400℃, the diffractive peak of hBN disappears and new phases of A1N and A1B2 are observed, due to reactions between A1 and cBN. When the sintering temperature is further increased to 1500℃, the contents of A1N and A1B2 phases increase and the A1 phase disappears completely.  相似文献   

9.
本文在8 7GPa压力范围内研究了三聚氰胺(C3N6H6)的高压原位Raman光谱。通过内、外Raman活性模的压致效应,发现在1 5GPa和6 0GPa压力下该分子晶体发生了压致结构相变。用空间群相关原理确认在1 5GPa压力下它从单斜相转变为三斜相;在6 0GPa压力下又发生了另一次结构相变。然后在室温高压条件下对三聚氰胺进行了原位同步辐射能量散射x-ray衍射实验(EDXD),在14 7GPa压力范围内,观察到常压下为单斜晶系的三聚氰胺经历了两次压致结构相变。在1 3GPa下,三聚氰胺分子晶体从单斜相转变为三斜相;在8 2GPa又转变为正交相。本实验结果为利用三聚氰胺碳氮有机分子晶体高温高压合成超硬C3N4共价晶体的研究提供了重要信息。  相似文献   

10.
The work functions of the(110) and(100) surfaces of LaB_6 are determined from ambient pressure to 39.1 GPa.The work function of the(110) surface slowly decreases but that of the(100) surface remains at a relatively constant value. To determine the reason for this difference, the electron density distribution(EDD) is determined from high-pressure single-crystal x-ray diffraction data by the maximum entropy method. The EDD results show that the chemical bond properties in LaB_6 play a key role. The structural stability of LaB6 under high pressure is also investigated by single-crystal x-ray diffraction. In this study, no structural or electronic phase transition is observed from ambient pressure to 39.1 GPa.  相似文献   

11.
The pressure-induced structural transitions of Zn Te are investigated at pressures up to 59.2 GPa in a diamond anvil cell by using synchrotron powder x-ray diffraction method.A phase transition from the initial zinc blende(ZB,ZnTe-I) structure to a cinnabar phase(ZnTe-I) is observed at 9.6 GPa,followed by a high pressure orthorhombic phase(ZnTe-Ⅲ) with Cmcm symmetry at 12.1 GPa.The ZB,cinnabar(space group P3_121),Cmcm,P3_1 and rock salt structures of Zn Te are investigated by using density functional theory calculations.Based on the experiments and calculations,the ZnTe-E phase is determined to have a cinnabar structure rather than a P3_1 symmetry.  相似文献   

12.
The in situ high-pressure behavior of the semiconductor antimony trioxide(Sb_2O_s) is investigated by the Raman spectroscopy techniques and angle-dispersive synchrotron x-ray powder diffraction in a diamond anvil cell up to31.5 and 30.7 GPa,respectively.New peaks observed in the external lattice mode range in the Raman spectra at 13.5 GPa suggest that the structural phase transition occurs.The group mode(140 cm~(-1)) in Sb_2O_3 exhibits anomalous pressure dependence;that is,the frequency decreases gradually with the increasing pressure.High pressure synchrotron x-ray diffraction measurements at room temperature reveal that the transition from the orthorhombic structure to high-pressure new phase occurs at about 14.2 GPa,corresponding to the softening of the group optic mode(140 cm~(-1)).  相似文献   

13.
14.
以B和TiO2为初始原料,依据压力可抑制原子长程扩散的动力学效应,通过高温高压(4~5GPa,1 200~1 500℃)一步反应烧结法制备B6O/TiB2复合材料。当B和TiO2物质的量之比为14.0∶0.8时,在5GPa、1 200℃、保温30min条件下得到的烧结样品性能较好,非晶硼(纯度93%~94%)过量混合粉末样品的硬度最高约为29GPa,高纯晶体硼(纯度99.99%)过量混合粉末样品的硬度最高约为32GPa,相对密度可高达99%。实验结果表明:高压抑制晶粒过度长大,同时又有利于B6O的合成,使其合成温度比常压下有所降低;在高压反应烧结过程中,合成的第二相TiB2晶粒和样品中的非晶相有效地消耗了残余应力,起到了增韧作用。  相似文献   

15.
Brucite Mg(OH)_2 is an archetypal hydrous mineral and it has attracted a great deal of attention.However,little is known about the evolution of hydroxyl groups in brucite with respect to subduction fluids.We carried out Raman measurements up to 15.4 GPa and 874 K via an externally heated diamond anvil cell,investigating the stability of brucite under the conditions relevant to subducting slabs.The hydroxyl vibration mode A_(1_g)(I) of brucite is weakened under simultaneous high pressure-temperature conditions.Meanwhile,the presence of carbonated solution can destabilize the hydroxyl groups of brucite at low pressure.Our results suggest that brucite releases water when reacting with hydrogen carbonate ion to form magnesite MgCO_3 in subduction zones.This implies that the global water cycle is largely coupled with the deep carbon cycle in Earth's interior.  相似文献   

16.
High pressure and high temperature quench experiments on f -MnO 2 , Mn 2 O 3 and sol gel derived manganese oxides have been carried out to identify any new phases to which the materials may transform under high pressure and high temperature conditions. Results of ESR, DTA and TGA investigations on sol gel derived manganese oxide have shown it to be hausmannite Mn 3 O 4 , instead of n -Mn 2 O 3 as reported earlier in the literature. The sol gel derived manganese oxide transforms to n -Mn 2 O 3 when heated above 700°C. Sol gel derived Mn 3 O 4 , when quenched from 5 GPa and temperature range 800-1200°C, gives a mixture of Mn 3 O 4 (hausmannite) and a phase having CaMn 2 O 4 (marokite)-type structure. f -MnO 2 undergoes partial amorphization when pressure-quenched from 8 GPa at room temperature. The high pressure and high temperature quench experiments up to 5 GPa and 700°C showed that the decomposition temperature of f -MnO 2 increases with pressure. The new phase reported by Liu (1976) from diamond-anvil cell (DAC) experiments on pyrolusite MnO 2 is identified to be a low-density polymorph f -MnO 2 . This unusual result of formation of low-density f -MnO 2 , having an open structure at high pressure and high temperature, is probably due to quenching of a non-equilibrium phase in Liu's (1976) laser-heated DAC experiment.  相似文献   

17.

Crystalline hexagonal B(N 1 m x C x ) and cubic B-C-N compounds have been synthesized from a precursor produced from melamine and boric acid by application of high temperature and high pressure. The synthesized products were characterized by X-ray diffraction. The lattice parameters for the hexagonal crystal are a=2.506 Å, c=6.657 Å, and that for the cubic crystal is a=3.596 Å. The X-ray photoelectron spectra of the B-C-N compound indicate the presence of B-N, C-N, C-C, and B-C bonds, which suggests that boron, carbon, and nitrogen atoms all bond with one another and that the B-C-N crystal is a compound in which the three kinds of atoms are mixed atomically. The composition of the B-C-N compound is B 0.47 C 0.23 N 0.30 . A strong absorption band at 1000~1120 cm m 1 attributable to the cubic B-C-N phase is observed in the infrared spectrum. The photoluminescence spectrum of hexagonal B-C-N powder measured at room temperature features a broad peak centered at 374 nm, corresponding to the band-edge emission of h-B-C-N, and is similar to that of w-GaN.  相似文献   

18.
19.
We conduct extensive research into the structures of BexZn1-xOO ternary alloys in a pressure range of 0-60GPa,using the ab initio total energy evolutionary algorithm and total energy calculations,finding several metastable structures.Our pressure-composition phase diagram is constructed using the enthalpy results.In addition,we calculate the electronic structures of the BexZn1-xOO structures and investigate the bandgap values at varying pressures and Be content.The calculated results show that the bandgap of the BexZn1-xOO ternary alloys increases with an increase in Be content at the same pressure.Moreover,the bandgap of the BexZn1-xOO ternary alloys increases with the increasing pressure with fixed Be content.At the same Be content,the formation enthalpy of the BexZn1-xOO ternary alloys first decreases,then increases with the increasing pressure.  相似文献   

20.
The thermodynamic properties of LiBC are investigated by using the full-potential linearized muffin-tin orbital method (FP-LMTO) within the frame of density functional theory (DFT) and using the quasi-harmonic Debye model. The dependencies of the normalized lattice parameters a/a0 and c/c0, the ratio (c/a)/2, the normalized primitive volume V/V0 on pressure and temperature are successfully obtained. It is found that the interlayer covalent interactions (Li-B bonds or Li-C bonds) are more sensitive to temperature and pressure than intralayer ones (B-C bonds), as gives rise to the extreme lattice anisotropy in the bulk hcp LiBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号