首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We study and derive the energy conditions in generalized non-local gravity, which is the modified theory of general relativity obtained by adding a term m~(2 n-2)R□~(-n)nR to the Einstein-Hilbert action. Moreover, to obtain some insight on the meaning of the energy conditions, we illustrate the evolutions of four energy conditions with the model parameter ε for different n. By analysis we give the constraints on the model parameters ε.  相似文献   

3.
In this paper, we derive some new exact solutions of static wormholes in f(R) gravity supported by the matter possesses Lorentzian density distribution of a particle-like gravitational source. We derive the wormhole’s solutions in two possible schemes for a given Lorentzian distribution: assuming an astrophysically viable F(R) function such as a power-law form and discuss several solutions corresponding to different values of the exponent (here $F =\frac{df}{dR}$ ). In the second scheme, we consider particular form of two shape functions and have reconstructed f(R) in both cases. We have discussed all the solutions with graphical point of view.  相似文献   

4.
5.
We study gravitational baryogenesis in the context of f(R, T) gravity where the gravitational Lagrangian is given by a generic function of the Ricci scalar R and the trace of the stress-energy tensor T. We explore how this type of modified gravity is capable to shed light on the issue of baryon asymmetry in a successful manner. We consider various forms of baryogenesis interaction and discuss the effect of these interaction terms on the baryon to entropy ratio in this setup. We show that baryon asymmetry during the radiation era of the expanding universe can be non-zero in this framework. Then, we calculate the baryon to entropy ratio for some specific f(R, T) models and by using the observational data, we give some constraints on the parameter spaces of these models.  相似文献   

6.
7.
8.
We study gravitational baryogenesis in the context of f(R, T) gravity where the gravitational Lagrangian is given by a generic function of the Ricci scalar R and the trace of the stress-energy tensor T. We explore how this type of modified gravity is capable to shed light on the issue of baryon asymmetry in a successful manner. We consider various forms of baryogenesis interaction and discuss the effect of these interaction terms on the baryon to entropy ratio in this setup. We show that baryon asymmetry during the radiation era of the expanding universe can be non-zero in this framework. Then, we calculate the baryon to entropy ratio for some specific f(R, T) models and by using the observational data, we give some constraints on the parameter spaces of these models.  相似文献   

9.
We study the viable Starobinsky f(R) dark energy model in spatially non-flat FLRW backgrounds, where f(R)=RλRch[1(1+R2/Rch2)1] with Rch and λ representing the characteristic curvature scale and model parameter, respectively. We modify CAMB and CosmoMC packages with the recent observational data to constrain Starobinsky f(R) gravity and the density parameter of curvature ΩK. In particular, we find the model and density parameters to be λ1<0.283 at 68% C.L. and ΩK=0.000990.0042+0.0044 at 95% C.L., respectively. The best χ2 fitting result shows that χf(R)2χΛCDM2, indicating that the viable f(R) gravity model is consistent with ΛCDM when ΩK is set as a free parameter. We also evaluate the values of AIC, BIC and DIC for the best fitting results of f(R) and ΛCDM models in the non-flat universe.  相似文献   

10.
We study wormhole solutions in the framework of f(R,T) gravity where R is the scalar curvature, and T is the trace of the stress-energy tensor of the matter. We have obtained the shape function of the wormhole by specifying an equation of state for the matter field and imposing the flaring out condition at the throat. We show that in this modified gravity scenario, the matter threading the wormhole may satisfy the energy conditions, so it is the effective stress-energy that is responsible for violation of the null energy condition.  相似文献   

11.
A rigorous construction of Clifford-space Gravity is presented which is compatible with the Clifford algebraic structure and permits the derivation of the generalized connections in Clifford spaces (C-space) in terms of derivatives of the C-space metric. We continue by arguing how Lanczos-Lovelock higher curvature gravity can be embedded into gravity in Clifford spaces and suggest how this might also occur for extended gravitational theories based on f(R),f(R μν ),… actions, for polynomial-valued functions. Black-strings and black-brane metric solutions in higher dimensions D>4 play an important role in finding specific examples.  相似文献   

12.
In this paper, the cosmological model of the Universe has been presented in f ( Q ) $f(Q)$ gravity and the parameters are constrained from the cosmological data sets. At the beginning, a well motivated form of f ( Q ) = α + β Q n $f(Q) = \alpha + \beta Q^{n}$ has been employed, where α, β, and n are model parameters. The Hubble parameter is obtained in redshift with some algebraic manipulation from the considered form of f ( Q ) $f(Q)$ . Then it is parameterized with the recent Hubble $\text{Hubble}$ data and Pantheon + SHOES $\text{Pantheon} + \text{SHOES}$ data using Markov chain Monte Carlo analysis. The obtained model parameter values are validated with the baryon acoustic oscillation data set. A parametrization of the cosmographic parameters shows the early deceleration and late time acceleration with the transition at z t 0.75 $z_\text{t}\approx 0.75$ . The O m ( z ) $Om(z)$ diagnostics gives positive slope which shows that the model is in the phantom phase. Also the current age of the Universe has been obtained as, t 0 = 13.85 Gyrs $t_{0} = 13.85\nobreakspace \nobreakspace \text{Gyrs}$ . Based on the present analysis, it indicates that the f ( Q ) $f(Q)$ gravity may provide an alternative to dark energy for addressing the current cosmic acceleration.  相似文献   

13.
The static plane symmetric vacuum solutions (Sharif and Shamir in Mod. Phys. Lett. A 25:1281, 2010) for n+1 dimension are reported. For this purpose, the generalized field equations are solved using the assumption of constant scalar curvature in metric f(R) gravity.  相似文献   

14.
The main purpose of this paper is to investigate the exact solutions of plane symmetric spacetime in the context of f(R,T)gravity[Phys.Rev.D 84(2011)024020],where f(R,T)is an arbitrary function of Ricci scalar R and trace of the energy momentum tensor T.We explore the exact solutions for two different classes of f(R,T)models.The first class f(R,T)=R+2f(T)yields a solution which corresponds to Taub's metric while the second class f(R,T)=f_1(R)+f_2(T)provides two additional solutions which include the well known anti-deSitter spacetime.The energy densities and corresponding functions for f(R,T)models are evaluated in each case.  相似文献   

15.
16.
This paper is devoted to investigate non-vacuum solutions of cylindrically symmetric spacetime in the context of metric f(R) gravity. We take dust matter to find energy density of the universe. In particular, we find two exact solutions, which correspond to two f(R) models in each case. The first solution provides constant curvature while the second solution corresponds to non-constant curvature. The functions of the Ricci scalar and energy densities are evaluated in each case.  相似文献   

17.
This paper is devoted to find the Locally Rotationally Symmetric (LRS) vacuum solutions in the context of f(R) theory of gravity. Actually, we have considered the three metrics representing the whole family of LRS spacetimes and solved the field equations by using metric approach as well as the assumption of constant scalar curvature. It is mention here that R may be zero or non-zero. In all we found 10 different solutions.  相似文献   

18.
This paper is devoted to investigate non-vacuum solutions of cylindrically symmetric spacetime in the context of metric f(R) gravity. We take dust matter to find energy density of the universe. In particular, we find two exact solutions, which correspond to two f(R) models in each case. The first solution provides constant curvature while the second solution corresponds to non-constant curvature. The functions of the Ricci scalar and energy densities are evaluated in each case.  相似文献   

19.
In a paper[Gen. Relativ. Gravit. 48 (2016) 57] Chakrabarti and Banerjee investigated perfect fluid collapse in f(R) gravity model and claimed that such a collapse is possible. In this paper we show that without the assumption of dark energy it is not possible that perfect fluid spherical gravitational collapse will occur. We have solved the field equations by assuming linear equation of state (p=ωμ) in metric f(R) gravity with ω=-1. It is shown that Chakrabarti and Banerjee reached to false conclusion as they derived wrong field equations. We have also discussed formation of apparent horizon and singularity.  相似文献   

20.
In a paper [Gen. Relativ. Gravit. 48(2016) 57] Chakrabarti and Banerjee investigated perfect fluid collapse in f(R) gravity model and claimed that such a collapse is possible. In this paper we show that without the assumption of dark energy it is not possible that perfect fluid spherical gravitational collapse will occur. We have solved the field equations by assuming linear equation of state(p = ωμ) in metric f(R) gravity with ω =-1. It is shown that Chakrabarti and Banerjee reached to false conclusion as they derived wrong field equations. We have also discussed formation of apparent horizon and singularity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号