首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了理解前后表面损伤不对称性的物理内涵, 利用阴影成像技术研究了纳秒紫外激光诱使熔石英光学元件表面损伤的时间分辨动力学过程.研究表明,纳秒紫外激光与熔石英作用过程中前后表面损伤的物理机理是完全不同的.前表面处空气中等离子体和冲击波较强, 等离子体的屏蔽作用抑制了余脉冲能量的沉积, 降低了元件损伤程度.而后表面处等离子体吸收激光能量膨胀, 对后表面冲击作用更为严重, 形成的等离子体电子密度可达到1023cm-3以上, 反射部分激光能量与入射的激光余脉冲干涉, 使得 关键词: 熔石英 激光诱使损伤 阴影成像技术 光学元件表面  相似文献   

2.
研究了熔石英玻璃元件在纳秒激光等离子体冲击波作用下的表面和横截面损伤形貌,利用有限元法模拟了冲击波在熔石英玻璃内部的传播规律,并基于冲击波在玻璃内部的应力分布规律分析了损伤形成机理.研究发现:在冲击波作用下,石英玻璃会受到沿波面方向的压应力和沿波面切方向的拉应力,在这两种力的作用下,造成以激光辐照中心的弧状层状断裂和沿径向的断裂;冲击波的反射叠加还会使局部拉应力增大,造成靠近后表面的损伤.有限元法能够直观地分析等离子体冲击波对光学元件的作用,并分析光学元件在等离子体冲击波下的损伤机理.  相似文献   

3.
发展了355 nm纳秒激光下亚波长杂质粒子引起熔石英损伤的基本模型。通过Mie散射理论和热传导方程,计算了粒子与熔石英边界处的温度随粒子尺寸的变化关系,并分析了达到临界温度时,不同粒子诱导损伤所需的关键能量密度,讨论了各粒子最易引起熔石英损伤的尺寸。实验采用355 nm纳秒激光脉冲作用熔石英及其HF刻蚀样品,测得两者的损伤概率。研究表明:粒子吸收激光能量,随着粒子半径的增加,其边缘温度先增大后减小,一定尺寸范围内的粒子才会引起熔石英的损伤;关键能量密度所对应的粒子半径为最易引起熔石英损伤的关键粒子半径;经刻蚀后,熔石英样品表面杂质数密度降低,损伤概率降低,损伤阈值提高。  相似文献   

4.
激光诱导等离子体加工石英微通道机理研究   总被引:2,自引:0,他引:2       下载免费PDF全文
李世雄  白忠臣  黄政  张欣  秦水介  毛文雪 《物理学报》2012,61(11):115201-115201
利用调Q的Nd: YAG激光器输出的纳秒激光脉冲诱导等离子体加工石英微通道, 显微镜下观察微通道深度可达4 mm, 通道周围没有发现热裂纹, 围绕通道内壁产生了固化层. 研究了纳秒脉冲下固体材料损伤的电离机理. 波长为1064 nm, 光强不很强的纳秒脉冲作用时, 光学击穿中等离子体的形成主要是雪崩电离的结果, 利用雪崩击穿的阈值理论得到了等离子体形成模型, 求出了等离子体形成范围, 理论模型结果与实验结果基本相符.最后基于激光支持的爆轰波模型, 利用流体力学理论求出了等离子体的温度、 速度、 压强等特征参数, 并分析了微通道的特点.高温高压的等离子体烧蚀出石英微通道, 等离子通过后, 在冲击波压力作用下微通道内壁熔化的 石英凝固形成固化层.  相似文献   

5.
 采用光电探测器和数字示波器检测散射光脉冲信号,研究了基频和三倍频Nd:YAG激光诱导熔石英损伤过程,给出了泵浦光和探针光的散射光光电信号;比较了基频和三倍频激光作用下熔石英烧蚀斑显微照片,并分析了其损伤机理。结果显示:在ns脉冲激光作用下,熔石英损伤均发生在泵浦激光脉冲峰值附近,且基频光作用下损伤开始时间点比三倍频作用下早;在多脉冲或高能量激光辐照下,检测到了等离子体闪光信号,等离子体闪光发生在时间延迟21 ns附近。基于Keldysh理论计算了基频光和三倍频光作用下,熔石英光致电离速率同激光强度的关系。  相似文献   

6.
基于等离子体荧光法研究了Nd∶YAG纳秒1 064 nm激光脉冲诱导击穿空气等离子体的膨胀动力学过程,用ICCD相机捕获了不同激光脉冲能量诱导的空气等离子体随时间演化图像,给出激光能量100,150,200,300 mJ时击穿空气产生的空气等离子体波阵面前沿的膨胀距离,推演出空气等离子体的扩展速度。实验结果表明等离子体发光区域主要分布在等离子体膨胀区域,等离子体荧光强度随时间增加变强然后渐渐变弱,膨胀区域逐渐增大,在300 mJ,22 ns膨胀距离最大达到3.76 mm,等离子体扩展速度在膨胀初期达到105 m·s-1量级,在膨胀16 ns内迅速衰减,随后趋于平缓。激光脉冲能量越大,引起空气击穿的时刻靠近高斯激光脉冲上升阶段。  相似文献   

7.
利用光学元件激光损伤测试平台,测试了355 nm皮秒激光辐照下熔石英光学元件的初始损伤及损伤增长情况,并通过荧光检测分析了损伤区缺陷。研究结果表明:皮秒激光较高的峰值功率导致熔石英损伤阈值较低,前表面损伤阈值为3.98 J/cm2,后表面损伤阈值为2.91 J/cm2;前后表面损伤形貌存在较大差异,后表面比前表面损伤程度轻且伴随体内丝状损伤;随脉冲数的增加后表面损伤直径增长缓慢,损伤深度呈线性增长;皮秒激光的动态自聚焦和自散焦导致熔石英体内损伤存在细丝和炸裂点重复的现象;与纳秒激光损伤相比,损伤区缺陷发生明显改变。  相似文献   

8.
利用光学元件激光损伤测试平台,测试了355 nm皮秒激光辐照下熔石英光学元件的初始损伤及损伤增长情况,并通过荧光检测分析了损伤区缺陷。研究结果表明:皮秒激光较高的峰值功率导致熔石英损伤阈值较低,前表面损伤阈值为3.98 J/cm2,后表面损伤阈值为2.91 J/cm2;前后表面损伤形貌存在较大差异,后表面比前表面损伤程度轻且伴随体内丝状损伤;随脉冲数的增加后表面损伤直径增长缓慢,损伤深度呈线性增长;皮秒激光的动态自聚焦和自散焦导致熔石英体内损伤存在细丝和炸裂点重复的现象;与纳秒激光损伤相比,损伤区缺陷发生明显改变。  相似文献   

9.
光学元件激光损伤是限制高功率激光装置输出能力的关键因素,为了理解光学元件激光损伤过程,提高光学元件抗激光损伤性能,利用偏振阴影显微镜成像技术和光电探测技术研究了紫外皮秒激光诱使熔石英光学元件损伤的时间分辨动力学过程。结果显示了紫外皮秒激光作用过程中冲击应力波的传输特性、瞬态吸收的演变过程以及裂缝的发展过程。结果表明,冲击应力波的传输速度约为6.9μm/ns;532nm波长的激光瞬态吸收在激光作用之后2.5μs时激光吸收达到最大值,之后缓慢下降,整个持续时间可达50μs以上;损伤裂纹在7.5ns时刻就基本停止增长。研究结果对理解皮秒激光的损伤机制有重要意义。  相似文献   

10.
脉冲激光等离子体冲击波碎石机理分析   总被引:7,自引:0,他引:7  
赵卫  孙永道 《光子学报》1998,27(11):1001-1004
利用自行研制的Nd:YAG激光器产生的纳秒和微秒激光脉冲,分别在水中和空气中对几种人体结石进行了粉碎实验,激光被耦合到芯径为400μm的石英光纤中,耦合效率达70%.实验研究和分析计算表明脉冲激光等离子体冲击的产生是激光碎石的主要动力,而热分解作用只是促进了等离子体的形成并不是粉碎结石的主要原因,体液冲流和周围介质对等离子体的约束加速了碎石过程,脉冲激光碎石的过程是这几个方面共同作用的结果。  相似文献   

11.
李明  张宏超  陆建 《光子学报》2012,41(3):263-266
基于激光阴影法测量原理,建立了一个记录纳秒脉冲激光诱导等离子体屏蔽现象的实验光路系统,探索了一种等离子体屏蔽图像的记录方法,对纳秒脉冲激光诱导水击穿形成等离子体的现象进行了研究.记录了在不同能量状态下出现的激光诱导等离子体屏蔽图像,发现了激光诱导水介质的等离子体屏蔽效应随作用光能量呈增强的趋势,首次观测到了在纳秒脉冲激光作用下液体中出现的线型击穿现象.本文研究结果可为水下激光加工研究、医疗以及激光在液体中的传播特性研究提供实验依据.  相似文献   

12.
环境气体的压强对激光诱导等离子体特性有重要影响.基于发射光谱法开展了气体压强对纳秒激光诱导空气等离子体特性影响的研究,探讨了气体压强对空气等离子体发射光谱强度、电子温度和电子密度的影响.实验结果表明,在10-100 kPa空气压强条件下,空气等离子体发射光谱中的线状光谱和连续光谱依赖于气体压强变化,且原子谱线和离子谱线强度随气体压强的变化有明显差别.随着空气压强增大,激光击穿作用区域的空气密度增加,造成激光诱导击穿空气几率升高,从而等离子体辐射光谱强度增大.空气等离子体膨胀区域空气的约束作用,增加了等离子体内粒子间的碰撞几率以及能量交换几率,并且使离子-电子-原子的三体复合几率增加,因此造成原子谱线OⅠ777.2 nm与NⅠ821.6 nm谱线强度随着气体压强增大而增大,在80 kPa时谱线强度最高,随后谱线强度缓慢降低.而离子谱线N Ⅱ 500.5 nm谱线强度在40 kPa时达到最大值,气体压强大于40 kPa后,谱线强度随压强增加而逐渐降低.空气等离子体电子密度均随压强升高而增大,在80 kPa后增长速度变缓.等离子体电子温度在30 kPa时达到最大值,气体压强大于30 kPa后,等离子体电子温度逐渐降低.研究结果可为不同海拔高度的激光诱导空气等离子体特性的研究提供重要实验基础,为今后激光大气传输、大气组成分析提供重要的技术支持.  相似文献   

13.
利用光学元件基频激光损伤测试平台,通过实验测试相同条件下K9和熔石英两类常用 光学元件的初始损伤阈值、损伤增长阈值和损伤增长规律,对比研究了两类光学元件的基频激光损伤特性.结果表明,K9和熔石英光学元件的初始损伤阈值基本相同,损伤面积增长都遵循指数性增长规律,损伤深度成线性增长.但两者损伤增长特性仍有很大的差别,与熔石英相比,K9激光损伤增长阈值较低,并且相同通量下的激光损伤增长更为迅速,通过两类光学材料抗压性能的巨大差异很好地解释了这一现象.该研究结果对国内高功率激光装置的透射光学材料工程应用有非常重要的参考价值.  相似文献   

14.
利用ICCD可以在纳秒时间尺度下成像的特点,以飞秒准连续激光产生的超短脉冲光为探测光,对纳秒激光单脉冲烧蚀硅靶表面的演化过程进行动态监测。在能量密度为50J/cm^2时,捕获了纳秒单脉冲激光烧蚀硅靶面过程中等离子体演化的时间分辨图像。图像表明,纳秒激光烧蚀硅靶产生的等离子体开始时密度大,膨胀速度快,当纳秒激光脉冲过后,等离子体不再产生,并且其膨胀速度不再增加,直至完全消失。  相似文献   

15.
利用Nd:YAG激光器研究了纳秒激光诱导熔石英光学玻璃的初始损伤及损伤增长,对比研究了损伤程度和损伤形貌随激光波长、能量密度、脉冲数及位置的变化规律,并对损伤机制进行了分析和讨论。研究结果表明:初始损伤受损伤先驱的物理化学性质和激光参数的影响,而损伤增长规律与初始损伤程度、激光参数和位置有关;后表面的损伤随脉冲数的增加呈指数关系增长,前表面则呈线性关系;裂纹的产生及其在后续脉冲辐照下的发展是后表面损伤增长的主要原因,高温等离子体表面刻蚀是前表面损伤增长的主要原因  相似文献   

16.
利用Nd:YAG激光器研究了纳秒激光诱导熔石英光学玻璃的初始损伤及损伤增长,对比研究了损伤程度和损伤形貌随激光波长、能量密度、脉冲数及位置的变化规律,并对损伤机制进行了分析和讨论。研究结果表明:初始损伤受损伤先驱的物理化学性质和激光参数的影响,而损伤增长规律与初始损伤程度、激光参数和位置有关;后表面的损伤随脉冲数的增加呈指数关系增长,前表面则呈线性关系;裂纹的产生及其在后续脉冲辐照下的发展是后表面损伤增长的主要原因,高温等离子体表面刻蚀是前表面损伤增长的主要原因  相似文献   

17.
高功率固体激光装置的负载问题是制约装置建设与运行的瓶颈问题。在高通量紫外纳秒激光辐照下,熔石英后表面的损伤不断产生和增长,严重限制了装置的负载能力。在提升熔石英抗损伤性能的基础上修复既有损伤,循环使用光学元件,是现阶段提升装置负载能力的主要手段。主要介绍了国内外近年来在熔石英损伤的规律与机制、光学元件循环处理的支撑技术以及提升负载能力的新材料与新技术方面所取得的重要进展。  相似文献   

18.
使用上升沿40 ns、脉宽70 ns的重复频率单极性纳秒脉冲电源,采用双水电极结构产生大气压空气中介质阻挡放电.测量了纳秒脉冲下介质阻挡电压和电流,并获得长曝光时间和ns级曝光时间的放电特性,采用曝光时间为2 ns的高速摄影拍摄放电发展过程.结果表明:大气压空气中,水电极结构纳秒脉冲介质阻挡放电能够产生稳定均匀的放电等离子体,且存在二次放电.高速摄影对放电发展过程的拍摄结果表明:放电首先由电极中部开始发展,径向扩展至整个电极范围.  相似文献   

19.
熔石英表面铜膜污染物诱导损伤实验研究   总被引:3,自引:0,他引:3  
 在熔石英元件表面溅射一层厚度小于10 nm的金属铜膜污染物,并测试元件的透过率。测试355 nm熔石英元件的激光损伤阈值,并用光学显微镜观测损伤形态。实验结果表明:污染后的熔石英元件的损伤阈值降低20%左右,元件表面的金属污染物薄膜经强激光辐照,在熔石英表面形成很多坑状微损伤,分布不均的热应力导致表面起伏,并有明显的烧蚀现象,导致基底损伤阈值下降。建立的光吸收和热沉积传输模型初步解释污染物膜层导致熔石英元件损伤的机理。  相似文献   

20.
氮化硅陶瓷具有耐高温、耐腐蚀和耐磨损等优异性能, 可应用于金属材料和高分子材料难以胜任的极端工作环境。但具备这些优良特性的同时也给其加工带来了不便,传统的磨削加工方法效率低,设备损耗严重, 激光辅助加工为其提供了一种新途径。将等离子体光谱法和显微成像法相结合,对脉冲激光辐照氮化硅陶瓷的损伤阈值进行了测量,并分析了损伤机理。实验选用热压烧结氮化硅陶瓷为靶材,参考ISO21254国际损伤阈值测试标准搭建试验系统,采用1-on-1法利用Nd3+∶YAG固体脉冲激光分别在纳秒和微秒脉宽下辐照氮化硅陶瓷,两种脉宽分别选取10个能量密度梯度进行激光辐照,每个能量密度辐照10个点。利用光纤光谱仪采集光谱信息,利用金相显微镜获取显微图像信息,将光谱结果与显微成像结果对比分析, 发现纳秒脉宽下材料一旦损伤光谱上就会出现等离子体峰,通过分析光谱中等离子体峰,元素指认是否含有材料中特征元素即可判断损伤,为了区别空气电离击穿同时测量了空气等离子体光谱对比分析剔除干扰。微秒脉宽下显微图像观察到刚开始损伤时,光谱中只出现较强热辐射谱线并未出现等离子体谱线,进一步增加激光能量密度,光谱中会出现少量等离子体峰,因此不能直接以等离子体峰判断材料损伤阈值。利用金相显微镜观察损伤形貌,纳秒脉宽下在损伤区域内部观察到明显的烧蚀冲击状损伤,光谱呈现出大量等离子体谱线,说明纳秒激光辐照氮化硅损伤机制主要为等离子体冲击波引起的力学损伤效应。微秒脉宽在辐照区域边缘发现热烧蚀痕迹,损伤区内观察到大量熔融物,出现明显热辐射光谱,说明微秒激光辐照氮化硅损伤机制主要是由于长脉宽热积累引起的热损伤效应,随着能量密度增加热辐射谱上叠加有等离子体峰,等离子体峰值强度与损伤程度一致。利用零几率损伤阈值法对两种方法测得结果进行了拟合,分析发现等离子体光谱法更适用于纳秒脉宽下损伤阈值测量,得到结果为0.256 J·cm-2;显微成像法适用于微秒脉宽下损伤阈值测量,得到结果为6.84 J·cm-2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号