首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-temperature scanning tunnelling microscopy, scanning tunnelling spectroscopy and current imaging tunnelling spectroscopy (HT-STM/STS/CITS) were used to study the topographic and electronic structures changes due to surface modifications of the TiO2(1 1 0) surface caused by the STM tip. In situ high-temperature STM results showed that the created modifications were stable even at elevated temperatures. The STS/CITS results showed the presence of energy gap below the Fermi level on the untreated regions. The disappearance of energy gap below the Fermi level on the modifications created by the tip was observed. It is assumed that the presence of the tip can change the chemical stoichiometry of the surface from TiO2−x towards Ti2O3.  相似文献   

2.
李煜芝  陈宇光  石云龙 《物理学报》2006,55(5):2539-2542
采用严格对角化方法和自洽方法,研究准周期相互作用对spin-Peierls模型中晶格畸变和能隙的影响.研究表明,引入准周期作用后,spin-Peierls模型中晶格畸变和能谱表现出准周期结构的自相似特性.另外,在弹性系数K取不同值时,随着准周期作用强度的增强,晶格畸变的平均值可能会增大、减小或先增大后减小,其对应的能隙也有相似的行为. 关键词: 准周期相互作用 spin-Peierls模型  相似文献   

3.
利用扫描隧道显微镜研究了采用化学气相沉积法在铜箔表面生长出的高质量的六角氮化硼薄膜. 大范围的扫描隧道显微镜图像显示出该薄膜具有原子级平整的表面, 而扫描隧道谱则显示, 扫描隧道显微镜图像反映出的是该薄膜样品的隧穿势垒空间分布. 极低偏压的扫描隧道显微镜图像呈现了氮化硼薄膜表面的六角蜂窝周期性原子排列, 而高偏压的扫描隧道显微镜图像则呈现出无序和有序排列区域共存的电子调制图案. 该调制图案并非源于氮化硼薄膜和铜箔衬底的面内晶格失配, 而极有可能来源于两者界面处的氢、硼和/或氮原子在铜箔表面的吸附所导致的隧穿势垒的局域空间分布.  相似文献   

4.
Y. Uehara 《Surface science》2007,601(23):5643-5648
We have measured the scanning tunneling microscope (STM) light emission spectra of Ni(1 1 0)-streaky (1 × 2) surfaces. When the tip was fixed over atomic hydrogen adsorbed on the surfaces, two types of vibration-induced structure were observed in the STM light emission spectra. One is the periodic fine structures that were already reported in our previous paper [Y. Uehara, S. Ushioda, Phys. Rev. Lett. 92 (2004) 066102] and the other newly found in the present experiments is a stepwise structure that is located at the vibrational energy of hydrogen below the cutoff energy of the STM light emission. They are ascribed to different excitation mechanisms of the vibration in the STM light emission process; the periodic fine structures appear when the vibrating motion is directly excited by the electrons injected from the tip. Conversely, the stepwise structure is observed when it is excited by the electromagnetic fields confined in the tip-sample gap, i.e., by localized surface plasmons.  相似文献   

5.
王美娜  李英  王天兴  刘国栋 《物理学报》2013,62(22):227101-227101
基于密度泛函理论结合投影缀加平面波方法, 通过VASP软件包执行计算, 在分别考虑电子自旋阻挫共线与非共线的磁性结构基础上, 研究了正交结构下多铁性DyMnO3材料在不同磁性构型下的晶格参数、总能、磁性、电子态密度和能带结构. 计算过程中选取广义梯度近似赝势, 同时使用局域自旋密度近似+U方法处理强关联作用下3d电子的计算结果. 计算结果表明: Mn离子为A型反铁磁态磁性构型的情况下能量最低结构最为稳定, Dy稀土离子磁性甚微, 可忽略不计; 当考虑电子自旋为非共线排列时, 正交DyMnO3的总能提高、磁矩增大; 从电子结构图分析可知, 材料为间接能隙绝缘体, 能隙宽度约为0.38 eV, 加U后为1.36 eV, 导致晶格畸变的主要原因为Mn-3d与O-2p电子之间强烈的杂化作用. 关键词: 多铁性 反铁磁 密度泛函理论 非共线  相似文献   

6.
The W(110)/C-R(15×3) reconstructed surface has been studied by STM at variable tip-surface separation controlled by the tunneling gap resistance. A pronounced dependence of the STM image contrast as a function of tip height has been observed which is explained by the suppression of higher Fourier components, i.e. small wavelength features, with increasing tip height and an additional spatial dependence of the decay length of the surface wavefunction. As an important implication of our study we have found that STM images of non-trivial surface structures can depend critically on the tunneling gap resistance.  相似文献   

7.
The effects of Na atoms on high pressure structural phase transitions of CuIn(0.5)Ga(0.5)Se(2) (CIGS) were studied by an ab initio method using density functional theory. At ambient pressure, CIGS is known to have chalcopyrite (I42d) structure. The high pressure phase transitions of CIGS were proposed to be the same as the order in the CuInSe(2) phase transitions which are I42d → Fm3m → Cmcm structures. By using the mixture atoms method, the Na concentration in CIGS was studied at 0.1, 1.0 and 6.25%. The positive mixing enthalpy of Na at In/Ga sites (Na(InGa)) is higher than that of Na at Cu sites (Na(Cu)). It confirmed previous studies that Na preferably substitutes on the Cu sites more than the (In, Ga) sites. From the energy-volume curves, we found that the effect of the Na substitutes is to reduce the hardness of CIGS under high pressure. The most significant effects occur at 6.25% Na. We also found that the electronic density of states of CIGS near the valence band maximum is increased noticeably in the chalcopyrite phase. The band gap is close in the cubic and orthorhombic phases. Also, the Na(Cu)-Se bond length in the chalcopyrite phase is significantly reduced at 6.25% Na, compared with the pure Cu-Se bond length. Consequently, the energy band gap in this phase is wider than in pure CIGS, and the gap increased at the rate of 31 meV GPa(-1) under pressure. The Na has a small effect on the transition pressure. The path of transformation from the cubic to orthorhombic phase was derived. The Cu-Se plane in the cubic phase displaced relatively parallel to the (In, Ga)-Se plane by 18% in order to transform to the Cmcm phase. The enthalpy barrier is 0.020 eV/atom, which is equivalent to a thermal energy of 248 K. We predicted that Fm3m and Cmcm can coexist in some pressure range.  相似文献   

8.
籍建葶  张安民  杨润  田勇  金峰  邱祥冈  张清明 《中国物理 B》2016,25(6):67803-067803
In this work,Raman scattering measurements have been performed on the collapsed phase CaCo_2As_2 crystals.At least 8 Raman modes were observed at room temperature though CaCo_2As_2 is structurally similar to other 122 compounds like BaFe_2As_2.Two Raman modes are assigned to the intrinsic A_(1g)and B_(1g)of this material system respectively.The other ones are considered to originate from the local vibrations relevant to cobalt vacancies.Careful polarized measurements allow us to clearly resolve the four-fold symmetry of the B_(1g)mode,which put strong constraints on possible point group symmetries of the system with Co vacancies.The temperature-dependent measurements demonstrate that the anomalies in both frequency and width of the B_(1g)mode occur around Neel temperature T_N.The anomalies are considered to be related to the gap opening near the magnetic transition.The study may shed light on the structural and magnetic changes and their correlations with superconductivity in 122 systems.  相似文献   

9.
The electronic band structure in the CDW state (superlattice structure) of 1T-TiSe2 is calculated on the basis of the band-type Jahn-Teller model by extending our theory of lattice instability in the normal phase. A strong coupling between the hole-band (Se p states) around the Λ point and the electron-bands (Ti d states) around the Λ points is caused by the electron-lattice interaction. Reflecting such a strong coupling remarkable changes appear in the dispersion curves near the Fermi energy and the largest CDW gap is obtained to be 0.2 eV. We have also calculated a change of the density of states near the Fermi energy due to the superlattice formation. The result is consistent with that observed by angle-integrated photoemmision by Margaritondo et al. It is also shown that the magnitude of the lattice distortion observed at low temperatures can be explained in a way consistent with the lattice dynamics in the normal phase.  相似文献   

10.
We report inelastic neutron scattering studies of magnetic excitations in antiferromagnetically ordered SrFe2As2 (T_{N}=200-220 K), the parent compound of the FeAs-based superconductors. At low temperatures (T=7 K), the magnetic spectrum S(Q,Planck's omega) consists of a Bragg peak at the elastic position (Planck's omega=0 meV), a spin gap (Delta< or =6.5 meV), and sharp spin-wave excitations at higher energies. Based on the observed dispersion relation, we estimate the effective magnetic exchange coupling using a Heisenberg model. On warming across T_{N}, the low-temperature spin gap rapidly closes, with weak critical scattering and spin-spin correlations in the paramagnetic state. The antiferromagnetic order in SrFe2As2 is therefore consistent with a first order phase transition, similar to the structural lattice distortion.  相似文献   

11.
Recent high-pressure investigations of elemental In have yielded controversial results. We show that the observed high-pressure face-centered orthorhombic (fco) structure can be explained as an intermediate state between two body-centered tetragonal (bct) structures with different c/a ratios (c/a < square root [2] and c/a > square root [2], respectively). In a pressure range from about 50 to 200 GPa these two bct structures correspond to local minima of the total energy with respect to orthorhombic distortion of the ground-state bct In structure. The fco saddle point represents a tiny barrier and even at low temperatures rapid structural fluctuations should occur. Such a situation has not been identified in any other elemental metal.  相似文献   

12.
13.
Nematic order and its fluctuations have been widely found in iron-based superconductors. Above the nematic order transition temperature, the resistivity shows a linear relationship with the uniaxial pressure or strain along the nematic direction and the normalized slope is thought to be associated with nematic susceptibility. Here we systematically studied the uniaxial pressure dependence of the resistivity in Sr_(1-x)Ba_xFe_(1.97)Ni_(0.03)As_2, where nonlinear behaviors are observed near the nematic transition temperature. We show that it can be well explained by the Landau theory for the second-order phase transitions considering that the external field is not zero. The effect of the coupling between the isotropic and nematic channels is shown to be negligible. Moreover, our results suggest that the nature of the magnetic and nematic transitions in Sr_(1-x)Ba_xFe_2As_2 is determined by the strength of the magnetic-elastic coupling.  相似文献   

14.
Far-infrared reflectivity spectra of Cu2S have been measured from 20 to 700 cm−1 at several temperatures through the superionic transition temperature Tc. Many bands and two broad bands were observed at low and high temperatures, respectively. From the spectra, we determined optical dielectric constant , the angular frequencies of longitudinal (LO) and transverse (TO) optical phonons, and transverse effective charge. Based on these values, we suggest significant role of small band gap for high ionic conduction with small activation energy and the possibility of lattice distortion arising from an enhanced effective charge. Anomalous temperature dependence has been found for and TO–LO splitting.  相似文献   

15.
We report neutron scattering experiments probing the influence of uniaxial strain on both the magnetic and structural order parameters in the parent iron pnictide compound, BaFe2As2. Our data show that modest strain fields along the in-plane orthorhombic b axis can affect significant changes in phase behavior simultaneous to the removal of structural twinning effects. As a result, we demonstrate in BaFe2As2 samples detwinned via uniaxial strain that the in-plane C4 symmetry is broken by both the structural lattice distortion and long-range spin ordering at temperatures far above the nominal (strain-free) phase transition temperatures. Surprising changes in the magnetic order parameter of this system under relatively small strain fields also suggest the inherent presence of magnetic domains fluctuating above the strain-free ordering temperature in this material.  相似文献   

16.
We present a scanning tunneling microscopy (STM) investigation into the influence of the STM tip on the adsorption site switching of polychlorinatedbiphenyl (PCB) molecules on the Si(111)-7?×?7 surface at room temperature. From an initially stable adsorption configuration, atomic manipulation by charge injection from the STM tip prepared a new bi-stable configuration that switched between two bonding arrangements. No switching rate bias dependence was found for +?1.0 to +?2.2?V. Assuming a thermally driven switching process we find that the measured energy barriers to switching are influenced by the exact location of the STM tip by more than 10%. We propose that this energy difference is due the dispersion interaction between the tip and the molecule.  相似文献   

17.
A first-principles tight-binding linear muffin tin orbital (TB-LMTO) method within the local-density approximation is used to calculate the total energy, lattice parameter, bulk modulus, magnetic moment, density of states and energy band structures of half-metallic CrO2 at ambient as well as at high pressure. The magnetic and structural stabilities are determined from the total energy calculations. From the present study we predict a magnetic transition from ferromagnetic (FM) state to a non-magnetic (NM) state at 65 GPa, which is of second order in nature. We also observe from our calculations that CrO2 is more stable in tetragonal phase (rutile-type) at ambient conditions and undergoes a transition to an orthorhombic structure (CaCl2-type) at 9.6 GPa, which is in good agreement with the experimental results. We predict a second structural phase transition from CaCl2- to fluorite-type structure at 89.6 GPa with a volume collapse of 7.3%, which is yet to be confirmed experimentally. Interestingly, CrO2 shows half metallicity under ambient conditions. After the first structural phase transition from tetragonal to orthorhombic, half metallicity has been retained in CrO2 and it vanishes at a pressure of 41.6 GPa. Ferromagnetism is quenched at a pressure of 65 GPa.  相似文献   

18.
The structural and the microwave dielectric properties of BaxSr(1-x)TiO3 films (BST) with x=0.5, 0.6 and 0.7, containing 1 mol % W have been investigated. The films were grown by pulsed-laser deposition on MgO (001) substrates at a temperature of 720 °C in an oxygen pressure from 3 to 500 mTorr. The film structures were determined by X-ray diffraction. The lattice parameters were fitted to a tetragonal distortion of a cubic lattice. The out-of-plane lattice parameter (c) was calculated from the position of the (004) reflection. Using c, the in-plane lattice parameter, a, was calculated from the position of the (024) and (224) reflections. A deviation in the calculated values for a, beyond the systematic error, was found in the in-plane lattice parameter, suggesting an in-plane orthorhombic distortion (a, a’). Films with x=0.7 showed a minimum in-plane distortion due to a better lattice match with the substrate. The ratio of the in-plane and out-of-plane lattice parameters was calculated as a measure of the lattice distortion (a/c and a’/c). The dielectric properties of the films deposited were measured at room temperature at 2 GHz using gap capacitors fabricated on top of the dielectric film. For all Ba/Sr ratios investigated in the W-doped material, the dielectric Q (1/cosδ) was observed to be insensitive to the oxygen deposition pressure. A peak in the change in the dielectric constant, as a function of an applied electric field (0–80 kV/cm), was observed for films deposited in 50 mTorr of oxygen. The largest K-factor, K=(ε(0)-ε(V )/ε(0)×Q(0)), for films deposited from a BST x=0.6 (1 mol % W-doped) target was observed in the film that had a minimum in-plane strain, where a∼a’ and c was greater than a and a’. Received: 4 July 2002 / Accepted: 5 July 2002 / Published online: 17 December 2002 RID="*" ID="*"Permanent address: Nuclear Research Center–Negev, P.O. Box 9001 Beer-Sheva, Israel RID="**" ID="**"Corresponding author. Fax: +1-202/767-5301, E-mail: horwitz@ccsalpha3.nrl.navy.mil  相似文献   

19.
Cleaved in air a-b surface of Bi2Sr2CaCu2O8 (BSCCO-2212) was measured by means of STM and STS at 4.2 K in liquid hellium bath. From fitting experimental conductivity curves by Dynes' function two superconductivity parameters (gap value) and (smearing parameter) were obtained. The shape of gap structure superimposed on dI/dV characteristics depends on tip-sample distance, what is expressed by the increase of and decrease of with shortening of s. The phenomenon of becoming gap structure more distinct when approaching the tunneling tip to the surface is explained by us as the non-vacuum tunneling, where the surface contamination layer on non-metallic BiO top-surface layer strongly influences the tunneling process. Only for s short enough tunneling electrons penetrate to deeper situated CuO layers and reflect their superconducting behaviour. Non-vacuum STM images are therefore sensitive to the tip-sample distance adjustment. The dependence of gap parameters on lateral position of the tip above the sample can also occur. In such cases STS enables to state which elements of the image belong to the topography of the surface and which to its electron density of states.  相似文献   

20.
Using ab initio calculations, we have studied the modification of the electronic structure of the MoS2(0001) surface by several point defects: a surface S vacancy and different transition metal atoms substituting a S atom (Pd, Au, Fe, and V). With a S vacancy, a gap state appears with weight mostly on the Mo and S atoms surrounding the vacancy. The substitutional atoms of complete d band (Pd and Au) do not present magnetic polarization and slightly modify the DOS near the Fermi energy. On the other hand, the incomplete d band atoms (Fe and V) present spin polarization and modify significantly the states near the band edges. From calculated STM images and STS curves, we show that this chemical signature can be measured and used to characterize the surface defects of the substrate which are suitable nucleation centers for nanocluster growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号