首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Hall conductivity of an electron gas on an interface showing a topological defectcalled screw dislocation is investigated. This kind of defect induces a singular torsionon the medium which in turn induces transverse modes in the quantum Hall effect. It isshown that this topology decreases the plateaus’ widths and shifts the steps in the Hallconductivity to lower magnetic fields. The Hall conductivity is neither enhanced nordiminished by the presence of this kind of defect alone. We also consider the presence oftwo defects on a sample, a screw dislocation together with a disclination. For a specificvalue of deficit angle, there is a reduction in the Hall conductivity. For an excess ofangle, the steps shift to higher magnetic fields and the Hall conductivity is enhanced.Our work could be tested only in common semiconductors but we think it opens a road to theinvestigation on how topological defects can influence other classes of Hall effect.  相似文献   

2.
The Hall conductivity of an electron gas on an interface showing topological defects as disclinations in the presence of an orthogonal constant magnetic field is investigated. This kind of defect induces either positive or negative singular curvature in the medium. It is shown that the positive curvature decreases the quantum Hall plateau widths and shifts the steps in the Hall conductivity to lower magnetic fields. In contrast, the negative one leaves to the existence of two types of plateaus, one with higher widths and the other one with lower widths in comparison to the flat case. In this case, the shift in the steps of the Hall conductivity goes to higher magnetic fields. We also investigate the Hall conductivity for electrons around a cylindrically symmetric distribution of disclinations and it turns out that it is the same as that corresponding to a single effective disclination.  相似文献   

3.
We introduce a theoretical framework for computing transport coefficients for complex materials with extended states, and defect or band-tail states originating from static topological disorder. As a first example, we resolve long-standing inconsistencies between experiment and theory pertaining to the conductivity and Hall mobility for amorphous silicon and show that the Hall sign anomaly is a consequence of localized states. Next, we compute the ac conductivity of amorphous polyaniline. The method may be readily integrated with current ab?initio methods.  相似文献   

4.
The extrinsic mechanism for anomalous Hall effect in ferromagnets is extended to include the contributions both from spin-orbit-dependent impurity scattering and from the spin-orbit coupling induced by external electric fields. The results obtained suggest that, within the framework of the extrinsic mechanisms, the anomalous Hall current in a ferromagnet may also contain asubstantial amount of dissipationless contribution independent of impurity scattering. After the contribution from the spin-orbit coupling induced by external electric fields is included, the total anomalous Hall conductivity is about two times larger than that due to spin-orbit dependent impurity scatterings.  相似文献   

5.
Hall effects of electrons can be produced by an external magnetic field, spin–orbit coupling or a topologically non-trivial spin texture. The topological Hall effect (THE) – caused by the latter – is commonly observed in magnetic skyrmion crystals. Here, we show analogies of the THE to the conventional Hall effect (HE), the anomalous Hall effect (AHE), and the spin Hall effect (SHE). In the limit of strong coupling between conduction electron spins and the local magnetic texture the THE can be described by means of a fictitious, “emergent” magnetic field. In this sense the THE can be mapped onto the HE caused by an external magnetic field. Due to complete alignment of electron spin and magnetic texture, the transverse charge conductivity is linked to a transverse spin conductivity. They are disconnected for weak coupling of electron spin and magnetic texture; the THE is then related to the AHE. The topological equivalent to the SHE can be found in antiferromagnetic skyrmion crystals. We substantiate our claims by calculations of the edge states for a finite sample. These states reveal in which situation the topological analogue to a quantized HE, quantized AHE, and quantized SHE can be found.  相似文献   

6.
We generalize the topological response theory of three-dimensional topological insulators (TI) to metallic systems-specifically, doped TI with finite bulk carrier density and a time-reversal symmetry breaking field near the surface. We show that there is an inhomogeneity-induced Berry phase contribution to the surface Hall conductivity that is completely determined by the occupied states and is independent of other details such as band dispersion and impurities. In the limit of zero bulk carrier density, this intrinsic surface Hall conductivity reduces to the half-integer quantized surface Hall conductivity of TI. Based on our theory we predict the behavior of the surface Hall conductivity for a doped topological insulator with a top gate, which can be directly compared with experiments.  相似文献   

7.
A theory of the static electron polarizability of crystals whose energy spectrum is modified by quantizing magnetic fields is presented. The polarizability is strongly affected by nondissipative Hall currents induced by the presence of crossed electric and magnetic fields: these can even change its sign. Results are illustrated in detail for a two-dimensional square lattice. The polarizability and the Hall conductivity are, respectively, linked to the two topological quantum numbers entering the so-called Diophantine equation. These numbers could in principle be detected in actual experiments.  相似文献   

8.
We study the spin currents induced by topological screw dislocation and cosmic dispiration. By using the extended Drude model, we find that the spin dependent forces are modified by the nontrivial geometry. For the topological screw dislocation, only the direction of spin current is bent by deforming the spin polarization vector. In contrast, the force induced by cosmic dispiration could affect both the direction and magnitude of the spin current. As a consequence, the spin-Hall conductivity does not receive corrections from screw dislocation.  相似文献   

9.
《Physics letters. A》2020,384(22):126429
Most topological phase transitions are accompanied by the emergence of surface/edge states with spin dependence. Usually, the quantized Hall conductivity cannot characterize the anisotropic transports and spin dependence of topological states. Here, we study the intricate topological phase transition and the anisotropic behavior of edge states in silicene nanoribbon submitted to an electric field or/and a light irradiation. It is interesting to find that a circularly polarized light can induce a type-II quantum anomaly Hall phase, which is manifested as the high Chern number and the strong anisotropic edge states. Besides the measurement of the quantized Hall conductivity, we further propose to probe these topological phase transitions and the anisotropy of edge states by measuring the current-induced nonequilibrium spin polarization. It is found that the spin polarization exhibits more signatures about the behavior of surface/edge states, beyond the quantized Hall conductivity, especially for spin-dependent transports with different velocities.  相似文献   

10.
11.
We have studied the effect of an external electric field on the dc fractional quantum Hall conductivity of a two-dimensional system with the dynamic structure function in the single-mode approximation. In analogy with the integral quantum Hall effect and euperconductivity, a gap-dependent critical electric current Jc, also exists in the case of fracctional quantum Hall conduction, above which is the maximum current for system to maintain superfluidity. We also find that, depending on the gap width and the phonon velocity, phonon may or may not contribute to the conductivity even at a finite lattice temperature, in agreement with experiments.  相似文献   

12.
An analysis is made of the problem of current flow in heterophase inhomogeneous media in the quantum Hall effect regime. Duality relations are derived and expressions are obtained for the effective conductivity of inhomogeneous media over the entire range of concentrations. Local current distributions (fields) are determined in the quantum Hall effect regime.  相似文献   

13.
The dependence of the different components of the conductivity resp. the resistivity tensor upon the strength and direction of an external magnetic field is discussed qualitatively. — In metals, in which the Fermi surface is simply closed, the changes in longitudinal and transversal resistance and the Hall coefficients are large if the anisotropies of the Fermi surface resp. of the scattering mechanism in the planes perpendicular to magnetic field direction are large, and vice versa. In fields, in which this effect already clearly is marked, the changes in transversal resistance in addition increase with increasing anisotropies ink-space perpendicular to Hall field direction, whereas by equal set in of current and Hall field direction the Hall coefficients now show a tendency to decrease with increasing anisotropies perpendicular to magnetic field direction. The order of Hall coefficients may change in high magnetic fields. In contrast to the changes in resistance the Hall coefficients decrease with increasing strength of magnetic field. — In the presence of open Fermi surfaces the transversal resistance doesn't saturate in the direction of the open orbits. If open orbits exist in more than one direction, saturation returns and the Hall coefficients now vanish proportional to 1/B 2. In considering open Fermi surfaces it is not allowed to neglect scattering in strong magnetic fields.  相似文献   

14.
Based on first-principles calculations, we predict that 5d transition metals on graphene present a unique class of hybrid systems exhibiting topological transport effects that can be manipulated effectively by external electric fields. The origin of this phenomenon lies in the exceptional magnetic properties and the large spin-orbit interaction of the 5d metals leading to significant magnetic moments accompanied with colossal magnetocrystalline anisotropy energies. A strong magnetoelectric response is predicted that offers the possibility to switch the spontaneous magnetization direction by moderate electric fields, enabling an electrically tunable quantum anomalous Hall effect.  相似文献   

15.
Spontaneous edge currents are known to occur in systems of two space dimensions in a strong magnetic field. The latter creates chirality and determines the direction of the currents. Here we show that an analogous effect occurs in a field-free situation when time reversal symmetry is broken by the mass term of the Dirac equation in two space dimensions. On a half plane, one sees explicitly that the strength of the edge current is proportional to the difference between the chemical potentials at the edge and in the bulk, so that the effect is analogous to the Hall effect, but with an internal potential. The edge conductivity differs from the bulk (Hall) conductivity on the whole plane. This results from the dependence of the edge conductivity on the choice of a selfadjoint extension of the Dirac Hamiltonian. The invariance of the edge conductivity with respect to small perturbations is studied in this example by topological techniques Mathematics Subject Classification (2000). 81Q10, 58J32  相似文献   

16.
Over a long period of exploration, the successful observation of quantized version of anomalous Hall effect (AHE) in thin film of magnetically doped topological insulator (TI) completed a quantum Hall trio—quantum Hall effect (QHE), quantum spin Hall effect (QSHE), and quantum anomalous Hall effect (QAHE). On the theoretical front, it was understood that the intrinsic AHE is related to Berry curvature and U(1) gauge field in momentum space. This understanding established connection between the QAHE and the topological properties of electronic structures characterized by the Chern number. With the time-reversal symmetry (TRS) broken by magnetization, a QAHE system carries dissipationless charge current at edges, similar to the QHE where an external magnetic field is necessary. The QAHE and corresponding Chern insulators are also closely related to other topological electronic states, such as TIs and topological semimetals, which have been extensively studied recently and have been known to exist in various compounds. First-principles electronic structure calculations play important roles not only for the understanding of fundamental physics in this field, but also towards the prediction and realization of realistic compounds. In this article, a theoretical review on the Berry phase mechanism and related topological electronic states in terms of various topological invariants will be given with focus on the QAHE and Chern insulators. We will introduce the Wilson loop method and the band inversion mechanism for the selection and design of topological materials, and discuss the predictive power of first-principles calculations. Finally, remaining issues, challenges and possible applications for future investigations in the field will be addressed.  相似文献   

17.
作为自旋电子学的重要研究内容,如何在固态系统中产生、操控以及探测自旋流引起了研究人员的广泛兴趣。基于自旋轨道耦合的自旋霍尔效应为在非磁性半导体中产生自旋流提供了一种有效途径。然而,在具有自旋轨道耦合的系统中,自旋流并不守恒。如何理解这点并恰当地表述相应的连续性方程,成为自旋输运研究的基本问题之一。本文主要综述自旋轨道耦合系统中自旋流与自旋霍尔效应方面的研究进展。引入SU(2)规范势后,自旋流满足协变形式的连续性方程,该方程保证了SU(2)Kubo公式在不同规范固定下的自洽性。利用SU(2)场强张量,可以直接得到自旋密度和自旋流在SU(2)外场中受到的自旋力,该力在只有U(1)磁场时对应于Stern-Gerlach力。由于依赖杂质散射的外在自旋霍尔效应很难被利用,内在自旋霍尔效应的概念被提出:在非磁半导体中,U(1)电场会诱导出自旋流并导致系统边缘处的自旋积累。自旋霍尔效应已经在半导体和金属材料中被观察到。虽然在干净的二维电子气中自旋霍尔电导率是一普适常数e/8π,但杂质对它的影响却引起了人们的高度关注。通过引入退相干效应,自旋霍尔效应中杂质效应的一些令人困惑的理论结果,则得到清晰的解释。此外,本文还将介绍具有层间隧穿的双层二维电子气中的自旋输运现象。在能量简并点附近,自旋霍尔电导率和隧穿自旋电导率均会出现共振现象。当两层间的杂质势强度存在差异时,隧穿自旋电导率随门压的变化曲线呈现出非对称性,显示出自旋二极管效应。  相似文献   

18.
自旋轨道耦合系统中的自旋流与自旋霍尔效应   总被引:2,自引:0,他引:2  
作为自旋电子学的重要研究内容,如何在固态系统中产生、操控以及探测自旋流引起了研究人员的广泛兴趣.基于自旋轨道耦合的自旋霍尔效应为在非磁性半导体中产生自旋流提供了一种有效途径.然而,在具有自旋轨道耦合的系统中,自旋流并不守恒.如何理解这点并恰当地表述相应的连续性方程,成为自旋输运研究的基本问题之一.本文主要综述自旋轨道耦合系统中自旋流与自旋霍尔效应方面的研究进展.引入SU(2)规范势后,自旋流满足协变形式的连续性方程,该方程保证了SU(2)Kubo公式在不同规范固定下的自洽性.利用SU(2)场强张量,可以直接得到自旋密度和自旋流在SU(2)外场中受到的白旋力,该力在只有U(1)磁场时对应于Stern-Gerlach力.由于依赖杂质散射的外在自旋霍尔效应很难被利用,内在自旋霍尔效应的概念被提出:在非磁半导体中,U(1)电场会诱导出自旋流并导致系统边缘处的自旋积累.自旋霍尔效应已经在半导体和金属材料中被观察到.虽然在干净的二维电子气中自旋霍尔电导率是一普适常数e/8π,但杂质对它的影响却引起了人们的高度关注.通过引入退相干效应,自旋霍尔效应中杂质效应的一些令人困惑的理论结果,则得到清晰的解释.此外,本文还将介绍具有层间隧穿的双层二维电子气中的自旋输运现象.在能量简并点附近,自旋霍尔电导率和隧穿白旋电导率均会出现共振现象.当两层间的杂质势强度存在差异时,隧穿自旋电导率随门压的变化曲线呈现出非对称性,显示出自旋二极管效应.  相似文献   

19.
叶鹏 《物理学报》2020,(7):218-245
在有对称性保护的条件下,拓扑能带绝缘体等自由费米子体系的拓扑不变量可以在能带结构计算中得到.但是,为了得到强关联拓扑物质态的拓扑不变量,我们需要全新的理论思路.最典型的例子就是分数量子霍尔效应:其低能有效物理一般可以用Chern-Simons拓扑规范场论来计算得到;霍尔电导的量子化平台蕴含着十分丰富的强关联物理.本文将讨论存在于玻色和自旋模型中的三大类强关联拓扑物质态:本征拓扑序、对称保护拓扑态和对称富化拓扑态.第一类无需考虑对称性,后两者需要考虑对称性.理论上,规范场论是一种非常有效的研究方法.本文将简要回顾用规范场论来研究强关联拓扑物质态的一些研究进展.具体内容集中在"投影构造理论"、"低能有效理论"、"拓扑响应理论"三个方面.  相似文献   

20.
We study the two-dimensional Hall effect with a random potential. The Hall conductivity is identified as a geometric invariant associated with an algebra of observables. Using the pairing betweenK-theory and cyclic cohomology theory, we identify this geometric invariant with a topological index, thereby giving the Hall conductivity a new interpretation.Supported in part by the National Science Foundation under Grant No. DMS-8717185  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号