首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of temperature on the spectral luminescence characteristics of PbWO4:Tb3+ crystals with synchrotron and laser excitation is studied. If PbWO4:Tb3+ is excited by synchrotron radiation with λ = 88 nm at 300 K, a faint recombination luminescence of the impurity terbium is observed against the matrix luminescence. When the temperature is reduced to 8 K, the luminescence intensity of PbWO4:Tb3+ increases by roughly an order of magnitude and the characteristic luminescence of the unactivated crystal is observed. Excitation of PbWO4:Tb3+ by a nitrogen laser at 300 K leads to the appearance of emission from Tb3+ ions. At 90 K, a faint matrix luminescence is observed in addition to the activator emission. The formation of the luminescence excitation spectra for wavelengths of 60–320 nm is analyzed and the nature of the emission bands is discussed.  相似文献   

2.
We have studied thermally and photostimulated recombination processes in PbWO4 crystals in the temperature interval 90–295 K. We have shown that after x-ray excitation of the crystal at 90 K, the thermally stimulated luminescence curve shows a relatively intense peak at 110 K and weak peaks at about 173, 191, and 232 K. Exposure of the PbWO4 crystal to IR radiation after excitation by x-ray photons leads to the appearance of photostimulated flash luminescence, a significant decrease in the intensity of the 110 K peak, and a shift of that peak to the 116 K region. But long-wavelength illumination has less of an effect on the intensity and position of the higher temperature peaks. It is assumed that F centers are formed in the PbWO4 crystal at 90 K during x-ray exposure. The thermal light sum released by IR illumination in the temperature region 90–150 K has a maximum at ≈108 K. The nature of this maximum is connected with the complex centers [Pb3+ + (WO3-F)]. Optical and thermal degradation of these centers leads to the appearance of emission in the green region of the localized exciton spectrum.  相似文献   

3.
Wave-guided thin-film distributed-feedback (DFB) polymer lasers are fabricated by spin coating a PPV-derived semiconducting polymer, thianthrene-DOO-PPV, onto oxidised silicon wafers with corrugated second-order periodic gratings. The gratings are written by reactive ion beam etching. Laser action is achieved by transverse pumping with picosecond laser pulses (wavelength 347.15 nm, duration 35 ps). The DFB-laser surface emission and edge emission are analysed. Outside the grating region the polymer film is used for comparative wave-guided travelling wave laser (amplified spontaneous emission (ASE)) studies. The pump pulse threshold energy density for wave-guided DFB-laser action (4–9 μJ cm-2) is found to be approximately a factor of two lower than the threshold for wave-guided travelling wave laser action. The spectral width of the DFB laser (down to ΔλDFB≈0.07 nm) is considerably narrower than that of the travelling wave laser (ΔλTWL≈14 nm). The DFB-laser emission is highly linearly polarised transverse to the grating axis (TE mode). Only at high pump pulse energy densities does an additional weak TM mode build up. The surface-emitted DFB-laser radiation has a low divergence along the grating direction. For both the DFB lasers and the travelling wave lasers, gain saturation occurs at high excitation energy densities. Received: 7 January 2002 / Revised version: 15 February 2002 / Published online: 14 March 2002  相似文献   

4.
We obtained porous silicon films modified at room temperature by an Eu3+-containing polymer complex. The most intense photoluminescence of Eu3+ implanted in the porous silicon was observed at the wavelengths of 611, 618, 691, and 704 nm. In this case, the intensity of the intrinsic photoluminescence of strongly irradiated specimens of porous silicon decreased, while the intensity of weakly emitting films multiply increased. An investigation of the photoexcitation spectra made it possible to establish the effect of Eu3+-containing complexes on the mechanism underlying the excitation of photoluminescence of porous silicon. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 64, No. 4, pp. 499–501, July–August, 1997.  相似文献   

5.
The intensity of the 18.2 nm Balmer α-transition in C5+ excited in a capillary discharge using alumina and polyacetal tubes was studied. For discharge currents of up to 80 kA in tubes filled with C2H2, intense radiation from the excitation of C5+ ions and from the recombination of C6+ ions was observed. With increasing length of the discharge, the intensity in the falling edge of the recombination pulse rises faster than proportional. In contrast to previous investigations, gain by stimulated emission is excluded. The enhancement is ascribed to an optical guiding of the XUV radiation in the dense plasma created by ablation from the tube walls. Received: 1 April 1999 / Revised version: 22 July 1999 / Published online: 30 November 1999  相似文献   

6.
We have studied the photoluminescent properties of MIIGa2S4:Er3+ polycrystals (MII = Eu, Yb, Ca) for excitation by radiation with λ = 976 nm as a function of temperature. The samples were obtained by solid-state reaction. We have studied the comparative characteristics of the anti-Stokes and IR luminescence of these luminophores. We have determined the mechanisms for anti-Stokes emission of MIIGa2S4:Er3+ crystals. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 3, pp. 332–335, May–June, 2007.  相似文献   

7.
The temperature effect upon infrared-to-visible frequency upconversion fluorescence emission in Yb3+-sensitized Er3+-doped germanosilicate optical fibers excited with cw radiation at 1.064 μm is investigated. The experimental results revealed an eightfold enhancement in the visible upconversion emission intensity as the fiber temperature was increased from 17 °C to 180 °C. The fluorescence emission enhancement is attributed to the temperature-dependent multiphonon-assisted anti-Stokes excitation process of the ytterbium sensitizer. A theoretical approach that takes into account a sensitizer absorption cross-section, which depends on the phonon occupation number, has proven to agree very well with the experimental data Received: 6 April 1999 / Revised version: 27 August 1999 / Published online: 27 January 2000  相似文献   

8.
Yb2O3 polycrystals with a size of up to 10 mm are synthesized using the sintering and melting of the ultrapure Yb2O3 powders by the CO2-laser radiation with the power P L ≤ 100 W at the wavelength λ = 10.6 μm at the melting point T m = 2703 K, forming due to surface tension in melt, and crystallization in air. The analysis of the polycrystal microstructure using the methods of optical and electron microscopy and X- ray diffractometry shows that perfect oxide crystallites are formed in the course of crystallization after melting-through. The transformation of the luminescence and selective heat radiation (SHR) spectra of the Yb2O3 polycrystals is studied under the resonant excitation at λ ≈ 975 nm using a laser diode and the laser heating at the wavelength λ = 10.6 μm. When the resonant excitation power of the Yb3+ ions increases from 0.15 to 4.5 W, the Stokes luminescence of the Yb2O3 polycrystals is sequentially transformed into SHR and the thermal radiation of the crystal lattice. The transformation of the emission spectra of the Yb2O3 polycrystals with an increase in the laser heating intensity by about four orders of magnitude can be represented as the low-temperature heat radiation, spectral burst of the thermodynamically nonequilibrium SHR of the Yb3+ ions, and the high-temperature radiation of the crystal lattice. The temperature dependence of the luminescence spectra and SHR of the Yb2O3 polycrystals on the intensity of the laser and laser-thermal excitation and the concentration quenching of the Yb3+ luminescence in oxides indicate the key role of the interaction of the f-electron shell of the Yb3+ ions with the natural oscillations of the crystal lattice in the processes of the multiphonon excitation and nonradiative (multiphonon) and radiative (vibronic) relaxation.  相似文献   

9.
Continuous 295 nm excitation of whey protein bovine apo-α-lactalbumin (apo-bLA) results in an increase of tryptophan fluorescence emission intensity, in a progressive red-shift of tryptophan fluorescence emission, and breakage of disulphide bridges (SS), yielding free thiol groups. The increase in fluorescence emission intensity upon continuous UV-excitation is correlated with the increase in concentration of free thiol groups in apo-bLA. UV-excitation and consequent SS breakage induce conformational changes on apo-bLA molecules, which after prolonged illumination display molten globule spectral features. The rate of tryptophan fluorescence emission intensity increase at 340 nm with excitation time increases with temperature in the interval 9.3–29.9°C. The temperature-dependent 340 nm emission kinetic traces were fitted by a 1st order reaction model. Native apo-bLA molecules with intact SS bonds and low tryptophan emission intensity are gradually converted upon excitation into apo-bLA molecules with disrupted SS, molten-globule-like conformation, high tryptophan emission intensity and red-shifted tryptophan emission. Experimental Ahrrenius activation energy was 21.8 ± 2.3 kJ.mol−1. Data suggests that tryptophan photoionization from the S1 state is the likely pathway leading to photolysis of SS in apo-bLA. Photoionization mechanism(s) of tryptophan in proteins and in solution and the activation energy of tryptophan photoionization from S1 leading to SS disruption in proteins are discussed. The observations present in this paper raise concern regarding UV-light pasteurization of milk products. Though UV-light pasteurization is a faster and cheaper method than traditional thermal denaturation, it may also lead to loss of structure and functionality of milk proteins.  相似文献   

10.
The thermoluminescence of single crystals of corundum containing anion defects following x-ray and laser excitation is investigated. Its features in the luminescence bands of F, F+, and Cr3+ centers are studied. Synchronous measurements of the thermoluminescence and thermally stimulated exoelectron emission are performed by the fractional glow technique following x-ray and laser excitation of the samples. It follows from the results obtained that several traps are active in the temperature range of the principal dosimetric peak (400–500 K). The spectral sensitivity curve contains maxima corresponding to absorption bands of F, F+, and Al i + centers. A possible mechanism for the recombination luminescence of F centers is discussed. It is found that the material exhibits high sensitivity to small doses of ultraviolet laser radiation. Zh. Tekh. Fiz. 67, 72–76 (July 1997)  相似文献   

11.
The generation of a wide colour gamut, based on up-conversion of cheap near-infrared photons into the visible range, is of great importance for general lighting appliances and integrated optical devices. Here, we report for the first time on up-conversion luminescence under infrared excitation at 980 nm in Yb3+–Er3+–Tm3+ triply doped sol–gel derived SiO2–LaF3 based nano-glass–ceramics (SOL-YET), containing LaF3 nanocrystals with a size about 13 nm. Efficient simultaneous up-conversion emission of the three primary colours (blue, green and red) gives rise to a balanced white overall emission. The ratio between up-conversion emission bands can be varied by changing pump power intensity resulting in colour tuneable up-conversion phosphor.  相似文献   

12.
C. Joshi  S.B. Rai 《Optics Communications》2011,284(19):4584-4587
Optical absorption and photoluminescent properties of Ho3+/Yb3+ co-doped tellurite and zinc tellurite glasses are investigated. The effect of zinc oxide as a modifier on the luminescence properties of above mentioned samples has been explored. Two intense upconversion emission bands centered at 546 (5F4 + 5S2 → 5I8) and 660 nm (5F5 → 5I8) are observed on excitation with 976 nm diode laser. Zinc oxide acts as a quencher for 976 nm excited upconversion emission. The up and downconversion emission spectra are recorded with 532 nm excitation source also. In this case zinc oxide improves the up and downconversion emissions. A large enhancement in upconversion intensity has been observed when Ho3+ ion is co-doped with Yb3+ ion. The dependence of upconversion intensities on excitation power and on temperature has also been studied. The power dependence study shows a quadratic dependence of the fluorescence intensity on the excitation power while a decrement in emission intensity of all the transitions at different rates with increase in temperature is observed in temperature dependence study. The possible mechanisms are also discussed in order to understand the upconversion and energy transfer processes.  相似文献   

13.
Electroluminescence from thin-film electroluminescent devices is found to be quenched after IR irradiation of the devices in the interval between exciting voltage pulses. The IR irradiation decreases the emission intensity in the spectral range 530–540 nm, while increasing it between 640 and 690 nm. These effects are explained by IR-induced charge exchange between the deep centers due to V S 2+ and V S + sulfur vacancies, an increase in the concentration of the latter vacancies, and the redistribution of the channels of impact excitation of Mn2+ and V S + centers in favor of V S + centers. The cross section and rate of impact excitation of V S + centers, the photoexcitation cross section for V S 2+ centers, the IR radiation absorption coefficient, the internal quantum efficiency of electroluminescence, and the probability of radiative relaxation of Mn2+ centers, as well as the electron multiplication factor in the phosphor layer, are evaluated.  相似文献   

14.
The velocities of energy transport in an undercritical plasma of polymer aerogel with and without copper nanoparticles were measured. Transmission of the laser light through targets of different thicknesses such as submicron three-dimensional polymer networks with densities below the critical value (0.13–0.52 N cr) for a wavelength of 0.438 μm and intensity of (3–7)·1014 W/cm2 at a half-height pulse duration of 0.32 ns was studied. The transfer of a heating laser radiation was registered on the rear side of the target. It ranged from a level of ∼0.5% for the thickness of a low-density layer of 400 μm and density of 9 mg/cm3 (mass per unit square of 0.36 mg/cm2) up to 50–60% for a thickness of 100 μm and density of 2.25 mg/cm3 (mass per unit square of 0.02 mg/cm2). The time dependences of the optical emission from the rear side of the targets were measured. They appear to be indicative of the plasma dynamics in two-layer targets (polymer foam on Al foil) and enable the estimation of the absorption depth for the laser light in an undercritical plasma. __________ Translated from Preprint No. 8 of the P. N. Lebedev Physical Institute, Moscow (2007).  相似文献   

15.
We describe an optical diagnostics module and the instrumental and methodological features of ultrahigh vacuum experiments investigating the optical characteristics of condensed media in the short-wavelength (hv ~ 3.5–25 eV) range of the spectrum of probing synchrotron radiation. We give a brief presentation of the results of an experimental determination of the spectral dependence of the luminescence quantum yield and the luminescence excitation spectrum of ablatable polymer dielectrics on the Kurchatov synchrotron radiation source at values of the probing radiation power density (I 0 ~ 1012 photons/cm2∙sec) that are below threshold for extended surface vaporization and a surface temperature of the condensed targets equal to 77–300 K.  相似文献   

16.
The photoluminescence of barium thiogallates doped with Eu2+, Ce3+, and Eu2+ + Ce3+ ions is studied over a wide range of excitation levels (10–3–106 W/cm2). Introduction of 3 at.% Eu and 3 at.% Ce instead of 5 at.% Eu into a BaGa2S4 matrix doubles the luminescence quantum yield of the phosphor. Doped BaGa2S4 exhibits a high linearity in its luminescence intensity as a function of excitation level (a constant efficiency) up to 2·104 W/cm2 for excitation pulse durations of 8 ns, which corresponds to cw pumping at a power density of about 5·102 W/cm2 in terms of the concentration of excited ions. It is shown that using BaGa2S4:Eu,Ce along with the “yellow” phosphor of a Nichia NS6L083 LED may increase its color rendering index from 0.64 to 0.80 with no reduction in its luminous efficiency.  相似文献   

17.
By liquid-phase epitaxy from an aqueous alcoholic solution, we have obtained films of the well-known storage phospor CsBr:Eu, and we have studied their cathodoluminescence and photoluminescence (PL) spectra compared with the undoped CsBr films. We have established that the structure of the photoluminescence centers of the CsBr:Eu films when excited by laser radiation in the absorption band of the Eu2+ ions (λ = 337 nm) includes Eu2+-VCs isolated dipole centers and CsEuBr3 aggregate centers, and also luminescence centers based on inclusions of hydroxyl group OH with the corresponding emission bands in the 440 nm, 520 nm, and 600 nm regions. We have studied the dependence of the spectra and the intensity of the photoluminescence for CsBr:Eu films on annealing temperature in air at 423–483 K, compared with analogous dependences for CsBr:Eu single crystals obtained from the melt. We have shown that annealing the films at T = 423–463 K leads to rapid formation of CsEuBr3 aggregate luminescence centers, while for T > 473 K thermal degradation of these centers occurs. We conclude that the observed differences between the photoluminescence spectra of CsBr:Eu films and CsBr:Eu single crystals may be due to additional doping of the films with OH ions. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 2, pp. 191–194, March–April, 2006.  相似文献   

18.
19.
Four near-stoichiometric lithium niobate (NSLN) crystals codoped with Er3+ (1 mol%) and MgO (0, 0.5, 1.0, and 2.0 mol%) were grown from K2O-based flux in air using top seeded solution growth technique. The [Li]/[Nb] ratio, estimated from the blueshift of ultraviolet absorption edge, is 97.2% in NSLN:Er. MgO; codoping can increase the segregation coefficient of Er3+ in NSLN:Er:MgO crystal. The photorefractive damage threshold is enhanced by three orders of magnitude for NSLN:Er codoped with 1 mol% MgO, it coincides with the peak shift of OH absorption spectrum from 3481 to 3535 cm−1. Judd–Ofelt theory based on absorption spectra is used to analyze the influence of MgO concentration on the Judd–Ofelt intensity parameter, transition strength, fluorescence branching ratio, and stimulated emission cross section. From the time-resolved emission spectra and the comparison among emission spectra, two Er3+ crystal-field sites are ascertained in NSLN:Er codoped with 2 mol% MgO, this coincides with the bimodal structure in X-ray photoelectron spectrometry spectra. The upconversion processes under pulse excitation is proposed based on the pump energy dependence and decay kinetics. The distribution of Er3+-clustered sites in NSLN:Er:MgO series is discussed based on the nonexponential decay curves monitored at 550 nm under two-photon excitation.  相似文献   

20.
The beam propagation factor, M2 of the master-oscillator power-amplifier (MOPA) CuBr laser emission compliant with ISO 11146 is studied methodically. Statistical parameters of 2D intensity profile of the near and far fields of MOPA laser radiation are measured by a beam analyzing technique as functions of timing delay between MO and PA. For first time the influence of the gas buffer (causing the radiation profile to change from annular to top-hat and Gaussian-like) and light polarization on CuBr laser beam focusability (M2) was under investigation. The MOPA gain curve is found and the influence of gain on the input signal (from MO into PA) due to the absorption/amplification in PA on the field profiles is shown. For annular radiation M2 range is from 13–14 (small delays) to 5–6 (large delays) and for filled-center radiation M2 is 6–7 (small delays) and at the end of gain curve is as much as 4. With polarized light, M2 drops to 3 at the end of gain curve. The brightness of laser emission with hydrogen goes up 3–5 times and the linearly-polarized beam is at least 40% brighter than that of partial or non-polarized beams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号