首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Design of a compact blue-green stimulated hydrogen Raman shifter   总被引:1,自引:0,他引:1  
A design of a compact blue-green stimulated Raman shifter pumped by the third harmonic of a Nd:YAG laser is presented. Design parameters given here are based on our experimental investigation of various optimization techniques involving parametric studies. Blue-green energy conversion of up to 66% is achieved. The problem of optical breakdown is addressed.  相似文献   

2.
3.
4.
We present for the first time a Nd:YAG laser emitting at 1064 nm intracavity pumped by a 946 nm diode-pumped Nd:YAG laser. A 885 nm laser diode is used to pump the first Nd:YAG crystal emitting at 946 nm, and the second Nd:YAG laser emitting at 1064 nm intracavity pumped at 946 nm. We achieved an output power of 7.97 W at 1064 nm for an absorbed pump power at 946 nm of 9.55 W, corresponding to an optical efficiency of 83.4%. The beam quality M2 quality factor is about 1.1 at the maximum output power.  相似文献   

5.
The first-Stokes conversion efficiency for a stimulated Raman scattering (SRS) is usually very low in gaseous oxygen media. In 3.0 Mpa O2, a single longitudinal mode second harmonic Nd:YAG laser pump source gives a typical vibrational first-Stokes conversion efficiency of only 2.5%, In comparison, the accompanying stimulated Brillouin scattering (SBS) attains a reflectivity of 67%. However, by seeding an OPO beam into the Raman cavity, the first-Stokes photon conversion efficiency now attains a peak value of 54%, while the SBS reflectivity reduces to 5% in a 6.1 Mpa 41:59 O2/ He mixture. This 54% efficiency was obtained for a seeder laser pulse-width less than one half that of pump laser (6.8 ns). A first-Stokes peak power conversion efficiency as high as 88% has been obtained when the pump and seeder pulse peaks coincide. So, we may expect a higher first-Stokes photon conversion efficiency if the seeder pulse-width can be made equal to or larger than that of the pump pulse. On the other hand, the beam quality of the first-Stokes in an O2/ He mixture excels that of the pump laser for a seeder energy of 5 mJ and pump energy of 50 mJ. However, at pump energies higher than 105 mJ and a pump laser repetition rate of 10 Hz, the thermal defocusing effect worsens the first-Stokes beam quality. This thermal defocusing effect is a result of the Raman heat release and could be eliminated by fast circulating and cooling the Raman gas medium.  相似文献   

6.
Thermal effect control is critical to scale the output power of diode end-pumping solid lasers to several watts up and beyond. Diffusion bonding crystal has been demonstrated to be an effective method to relieve the thermal lens for the end-pumping laser crystal. The temperature distribution and thermal lens in Nd:YVO4/YVO4 composite crystal was numerically analyzed and compared with that of Nd:YVO4 crystal in this paper. The end-pumping Nd:YVO4/YVO4 composite crystal laser was set up and tested with z cavity. The maximum output power of 9.87 W at 1064 nm and 6.14 W at 532 nm were obtained at the pumping power of 16.5 W. The highest optical-optical conversion efficiencies were up to 60% at 1064 nm and 40% at 532 nm, respectively.  相似文献   

7.
A compact efficient diode-end-pumped acousto-optically Q-switched intracavity-frequency-tripled Nd:YAG 355 nm ultraviolet laser was realized. Intracavity sub-resonators with anti-reflection and high-reflection coated mirrors were used to get higher efficiency of third harmonic generation. With two LBO crystals used in frequency doubling and tripling processes respectively, greater than 1.2 W 355 nm average output power was obtained under the absorbed pump power of 10 W and the repetition rate of 5 kHz. The corresponding pump-to-ultraviolet conversion efficiency was determined to be as high as 12%. At 5 kHz, the minimize pulse width was obtained to be 14.2 ns with the peak power of 16.9 kW and single pulse energy of 240 μJ. The instability of the 355 nm laser was measured to be less than 4.2% at an output power of 0.9 W within half an hour operation.  相似文献   

8.
Comparison between c-cut and a-cut Nd:YVO4 microchip lasers passively Q-switched with a Cr4+:YAG saturable absorber is experimentally made. The lower emission cross section of the c-cut Nd:YVO4 crystal can enhance the passive Q-switching effect to produce a peak power 10 times higher than that obtained with the a-cut crystal. The experimental result further reveals that a c-cut Nd:YVO4 crystal is a very convenient material for short-pulse (sub-nanosecond) and high-peak-power (>10 kW) lasers. Received:10December2001/Revisedversion:22January2002 / Published online: 14 March 2002  相似文献   

9.
刘欢  巩马理 《物理学报》2009,58(10):7000-7004
报道了一台激光二极管端面抽运Nd:YVO4晶体内腔三倍频355 nm激光连续输出的全固态紫外激光器.激光腔采用紧凑型简单凹平直腔,腔长仅为70 mm.利用两块LBO晶体进行腔内倍频、和频,当注入抽运功率为2527 W时,获得最大功率为306 mW的355 nm连续波输出,光光转换效率为012%,输出功率短期不稳定性为53%,355 nm激光输出光束质量良好.通过采用内腔倍频技术和设计合理的腔参数,实现了中小功率连续输出的全固态紫外激光器的小型化、便携化,进一步拓宽了紫外激光器 关键词: 激光二极管端面抽运 内腔三倍频 连续波 355 nm激光  相似文献   

10.
A compact and efficient diode-pumped intracavity-frequency-doubled Nd:GdVO4/KTP green laser is demonstrated with a flat–flat cavity design. With a 1.3 at. % Nd3+-doped GdVO4 crystal and pumped at the weak-absorption peak of 806 nm, the second-harmonic output power at 532 nm was measured to be 1.95 W at an incident pump power of 8.4 W, corresponding to an optical conversion efficiency of 23.2%. The output characteristic at the fundamental wavelength of 1.063 μm was investigated with two different pump wavelengths. More than 4.5-W output power was generated when the laser was pumped at 806.2 nm. Received: 26 July 2000 / Revised version: 18 September 2000 / Published online: 7 February 2001  相似文献   

11.
We have pumped a fiber Raman laser with a cw mode-locked Nd:YAG laser operating at 1319 nm and generated pulses as short as 160 fsec using soliton pulse shaping in the fiber. We have also constructed a completely integrated oscillator loop using a fiber optic coupler and fusion splicing.  相似文献   

12.
We present for the first time a Nd:YAG laser emitting at 1319 nm intracavity pumped by a 946 nm diode-pumped Nd:YAG laser. A 809 nm laser diode is used to pump the first Nd:YAG crystal emitting at 946 nm, and the second Nd:YAG laser emitting at 1319 nm intracavity pumped at 946 nm. Intracavity sumfrequency mixing at 946 and 1319 nm was then realized in a LBO crystal to reach the yellow range. We obtained a continuous-wave output power of 158 mW at 551 nm with a pump laser diode emitting 18.7 W at 809 nm.  相似文献   

13.
刘欢  巩马理 《物理学报》2009,58(8):5443-5449
报道了一台LD端面抽运Nd:YAG晶体内腔三倍频355 nm激光高效率、高峰值功率准连续输出的全固态紫外激光器.激光腔采用紧凑型平平直腔,腔长仅106 mm.当注入抽运功率为5.73 W、重复频率为9 kHz时,获得163 mW的355 nm激光准连续输出,光光转换效率达到最高2.84%.当注入抽运功率为6.7 W重复频率为5 kHz时,获得最高174 mW的355 nm激光准连续输出,输出功率短期不稳定性为5%,光束质量因子M2为3.79.当注入抽运功率为5.73 W、重复频率为2 kHz时,获得112 mW的355 nm激光准连续输出,峰值功率最高达到9.15 kW.通过采用内腔倍频技术和设计合理的腔结构,实现了中小功率准连续输出的全固态紫外激光器的小型化、便携化,进一步拓宽了紫外激光器的应用领域. 关键词: LD端面抽运 内腔三倍频 Q')" href="#">声光调Q 紫外激光  相似文献   

14.
We report an efficient generation of red light in a periodically-poled LiTaO3 (PPLT) crystal by extracavity single-pass frequency doubling of a diode-pumped, Q-switched Nd:YVO4 laser at 1342 nm. The sample used in the experiment is 20 mm in length and 14.77 μm in period. An average power of 840 mW of the 671 nm red light is obtained with a 808 nm pump of 12.3 W, the overall optical-to-optical efficiency being 6.8%. The measured effective nonlinear coefficient of the sample is ∼3.8 pm/V. The high conversion efficiency and output power demonstrate that the periodically-poled crystal serving as a frequency conversion device may be used in practice to construct an all-solid-state red laser based on an extracavity single-pass quasi-continuous scheme. Received: 17 September 2001 / Revised version: 23 January 2002 / Published online: 8 May 2002  相似文献   

15.
2 ), deuterium (D2), and mixtures of hydrogen and helium (H2/He), versus Raman gas pressure and input pump energy of the pulsed Nd:YAG laser at 355 nm, are reported. Photon conversion efficiencies of 50% and 27% are achieved at the first Stokes lines (S1) in H2 and D2, respectively. As a result, ultraviolet and visible laser light (274–503 nm) was generated with energies ranging from a few mJ up to several tens of mJ. Received: 5 January 1998/Revised version: 3 June 1998  相似文献   

16.
We report the high efficiency of solar pumped laser. The sunlight is concentrated by the concentrator system, which is composed by the Fresnel lens and the cone-channel condenser. The power density of sunlight concentrated by the concentrator system surpasses the lasing threshold for pumping laser. In the experiment, the sunlight concentrated is coupled into the conical chamber pumping Nd:YAG laser media. Laser output of 3.5 W has been achieved; the collect efficiency is 3.5 W/m2. The conversion efficiency is 1.0% from solar power into laser, and the slope efficiency is achieved 1.86%.  相似文献   

17.
In this paper we report on the detection of new far-infrared laser lines from CH3Cl and CH3Br optically pumped with a continuously tunable high pressure CO2 laser. We found 80 new lines for CH3Cl and 9 new lines for CH3Br in the frequency region between 16 cm–1 and 41 cm–1, all due to stimulated Raman scattering. For the Raman gain regions bandwidths up to about 700 MHz were found. We also observed high intensity short far-infrared laser pulses of durations in the nanosecond regime.Permanent address: Physics Department, State Pedagogical University, SU-119435 Moscow, USSR  相似文献   

18.
We report an efficient single-frequency ring laser pumped directly into emitting level by a fiber-coupled laser diode (FCLD) at 885 nm for the first time. 4.8 W laser at 1064 nm was obtained in a 0.7 at % Nd:YAG with 63% slope efficiency and 51.7% light-light efficiency in absorbed pump power. At the same time, the line width of the longitudinal mode was about 50 MHz, and the beam was nearly diffraction-limited with M2 ≈ 1.07.  相似文献   

19.
Pulsed UV lasers at the wavelengths of 374 and 280 nm are realized by cascaded second harmonic generation (SHG) and sum frequency generation (SFG) processes using a Nd:YAG laser at 1123 nm. The Nd:YAG laser is longitudinally pumped and passively Q-switched, and it has a high peak power of 3.2 kW. The UV peak powers at 280 and 374 nm are 100 and 310 W, with pulse lengths of 6 and 8 ns, respectively. Spectral broadening of 374 nm laser by stimulated Raman scattering is studied in single mode pure silica core UV fiber. Realizations of UV lasers enabling compact design at 280 and 374 nm wavelengths are demonstrated.  相似文献   

20.
We demonstrate a 980 nm single-mode Yb-doped fiber laser with a 946 nm Q-switched Nd:YAG laser used as the pump source. The experimental arrangement exploited a 36.5 cm length of fiber and used the output from both ends of the cavity, providing a total average output power of 100 mW with a slope efficiency of 38%. In order to increase the coupling efficiency and the practicability of the fiber laser, another experimental setup with single ended output was studied, producing an average output power of 80 mW from a fiber length of 23.5 cm. The pulse duration is 10 ns at a repetition frequency of 16 kHz. The linewidth of the laser is 4 nm, ranging from 977 to 981 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号