首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
For the urgent demand of higher capacity of lithium-ion battery anode, tin pyrophosphate has attracted more and more attention because of its high theoretical capacity, cheapness, and no toxicity. However, production of stable mesoporous sphere structure and improvement of electrochemical performance remain a challenge. Here, SnP2O7 spherical particles were successfully prepared through spray drying method with SnCl4·5H2O and C2H8O7P2. Crystallization and microstructure were investigated by TG-DSC, XRD, SEM, and TEM. With the obtained mesoporous SnP2O7 particles after carbon coating, it demonstrates a high initial capacity reaching up to 1218 mAh g?1 and a significantly stable cycling performance with 620 mAh g?1 after 80 deep electrochemical cycles.  相似文献   

2.
Hexagonal and cubic Li0.5TiO2 particles have been fabricated through magnesiothermic reduction of Li2TiO3 particles in a temperature range of 600 to 640 °C. The prolonged reduction time results in lattice transition from hexagonal to cubic structure of Li0.5TiO2. Their microstructures, valance state, chemical composition, as well as electrochemical performance as anode candidates for lithium ion batteries have been characterized and evaluated. The hexagonal Li0.5TiO2 exhibits better electrochemical activity compared with the cubic one. Further, the carbon-coated hexagonal Li0.5TiO2 displays improved electrochemical performance with initial reversible capacity of 176.6 mAh g?1 and excellent cyclic behavior except capacity fading in the initial 10 cycles, which demonstrate a novel anode candidate for long lifetime lithium ion batteries.  相似文献   

3.
Yunyan Lin  Fuyu Xiao  Shaokang Gao 《Ionics》2013,19(3):391-394
LiZnVO4 particles ware synthesized via solid-state reaction route. It was characterized by X-ray diffraction and scanning electron microscopy. As anode material for rechargeable lithium-ion battery, the electrochemical performance of the LiZnVO4 samples was measured. It was found that a large capacity of 330 mAh g?1 can be retained after 70 cycles. The electrochemical measurements indicate that the anode material made of LiZnVO4 exhibits excellent cycling stability even at a high current density.  相似文献   

4.
Inferior rate capability is a big challenge for LiTi2(PO4)3 anode for aqueous lithium-ion batteries. Herein, to address such issue, we synthesized a high-performance LiTi2(PO4)3/carbon/carbon nanotube (LTP/C/CNT) composite by virtue of high-quality carbon coating and incorporation of good conductive network. The as-prepared LTP/C/CNT composite exhibits excellent rate performance with discharge capacity of 80.1 and 59.1 mAh g?1 at 10 C and 20 C (based on the mass of anode, 1 C = 150 mA g?1), much larger than that of the LTP/C composite (53.4 mAh g?1 at 10 C, and 31.7 mAh g?1 at 20 C). LTP/C/CNT also demonstrates outstanding cycling stability with capacity retention of 83.3 % after 1000 cycles at 5 C, superior to LTP/C without incorporation of CNTs (60.1 %). As verified, the excellent electrochemical performance of the LTP/C/CNT composite is attributed to the enhanced electrical conductivity, rapid charge transfer, and Li-ion diffusion because of the incorporation of CNTs.  相似文献   

5.
High-performance anode material for lithium-ion cell based on cobalt oxide was synthesized through a combination of sol-gel route and subsequent microwave heating. The influence of microwave irradiation temperature of the precursor on the characteristics of the active materials formed was studied. The physicochemical, structural, and morphological properties of the materials were studied in addition to the electrochemical performance by cyclic voltammetry and charge-discharge cycling vs. Li+/Li. Microwave heating at 350 °C resulted in the formation of Co3O4, whereas at 450 and 550 °C, a mixture of Co3O4, CoO, and Co was formed. Co3O4 synthesized at 350 °C possessed porous morphology with high specific surface area and exhibited superior electrochemical performance with initial specific capacity of 982 mAh g?1 and coulombic efficiency of ~75% along with good cycle performance retaining ~87% of initial capacity after 60 cycles.  相似文献   

6.
A commercial carbon black with microporous framework is used as carbon matrix to prepare sulfur/microporous carbon (S/MC) composites for the cathode of lithium sulfur (Li-S) battery. The S/MC composites with 50, 60, and 72 wt.% sulfur loading are prepared by a facile heat treatment method. Electrochemical performance of the as-prepared S/MC composites are measured by galvanostatic charge/discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), with carbonate-based electrolyte of 1.0 M LiPF6/(PC-EC-DEC). The composite with 50 wt.% sulfur presents the optimized electrochemical performance, including the utilization of active sulfur, discharge capacity, and cycling stability. At the current density of 50 mA g?1, it can demonstrate a high initial discharge capacity of 1624.5 mAh g?1. Even at the current density of 800 mA g?1, the initial capacity of 1288.6 mAh g?1 can be obtained, and the capacity can still maintain at 522.8 mAh g?1 after 180 cycles. The remarkably improved electrochemical performance of the S/MC composite with 50 wt.% sulfur are attributed to the carbon matrix with microporous structure, which can effectively enhance the electrical conductivity of the sulfur cathode, suppress the loss of active material during charge/discharge processes, and restrain the migration of polysulfide ions to the lithium anode.  相似文献   

7.
The silicon/graphite/carbon (SGC) composite was successfully prepared by ball-milling combined with pyrolysis technology using nanosilicon, graphite, and phenolic resin as raw materials. The structure and morphology of the as-prepared materials are characterized by X–ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM). Meanwhile, the electrochemical performance is tested by constant current charge–discharge technique, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) measurements. The electrodes exhibit not only high initial specific capacity at a current density of 100 mA g?1, but also good capacity retention in the following 50 cycles. The EIS results indicate that the electrodes show low charge transfer impedance Rsf?+?Rct. The results promote the as-prepared SGC material as a promising anode for commercial use.  相似文献   

8.
Nanoporous carbon microspheres (NCMs) are prepared by a one-step carbonizing and activating resorcinol?formaldehyde polymer spheres (RFs) in inert and CO2 atmosphere for anode materials of lithium-ion batteries (LIBs). Compared with RFs carbon microspheres (RF-C), after activating with hot CO2, the NCMs with porous structure and high BET surface area of 2798.8 m2 g?1, which provides abundant lithium-ion storage site as well as stable lithium-ion transport channel. When RF-C and NCM are used to anode material for LIBs, at the same current density of 210 mA g?1, the initial specific discharge capacity are 482.4 and 2575.992 mA h g?1, respectively; after 50 cycles, the maintain capacity are 429.379 and 926.654 mA h g?1, respectively. The porous spherical structure of NCM possesses noticeably lithium-ion storage capability, which exhibits high discharge capacity and excellent cycling stability at different current density. The CO2 activating carbonaceous materials used in anode materials can tremendously enhance the capacity storage, which provides a promising modification strategy to improve the storage capacity and cyclic stability of carbonaceous anode materials for LIBs.  相似文献   

9.
TiO2-reduced graphene oxide (RGO) composite was synthesized via a sol-gel process and investigated as an anode material for sodium-ion batteries (SIBs). A remarkable improvement in sodium ion storage with a reversible capacity of 227 mAh g?1 after 50 cycles at 50 mA g?1 is achieved, compared to that (33 mAh g?1) for TiO2. The enhanced electrochemical performance of TiO2-RGO composite is attributed to the larger specific surface area and better electrical conductivity of TiO2-RGO composite. The excellent performance of TiO2-RGO composite enables it a potential electrode material for SIBs.  相似文献   

10.
In this work, the MWO4 (M = Co, Ni) nanoparticles were successfully synthesized by a facile one-step hydrothermal method and used as novel anode materials for LIBs. The micromorphology of obtained CoWO4 and NiWO4 was uniform nanoparticles with the size of ~60 and ~40 nm, respectively, by structural characterization including X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). When tested as lithium-ion battery anode, CoWO4 nanoparticles exhibited a stabilized reversible capacity of 980 mA h g?1 at 200 mA g?1 after 120 cycles and 632 mA h g?1 at 1000 mA g?1 even after 400 cycles. And, the discharge capacity was as high as 550 mA h g?1 at the 400th cycle for NiWO4 nanoparticles. The excellent electrochemical performance could be attributed to the unique nanoparticles structure of the materials, which can not only shorten the diffusion length for electrons and lithium ions but also provide a large specific surface area for lithium storage.  相似文献   

11.
Yuntong Zhu  Xin Liu  Hailei Zhao  Jie Wang 《Ionics》2013,19(5):709-715
The InSn4 intermetallic powders are synthesized via carbothermal reduction route from In2O3 and SnO2. The reaction possibility is estimated by thermodynamic calculation. Pure InSn4 intermetallic powders with spherical morphology can be obtained at 900 °C in flowing nitrogen. The micro-sized InSn4 particle is actually composed of a large number of nano-sized grains with polycrystalline and loose structure. The synthesized InSn4 shows high reversible specific capacity (ca. 500 mAhg?1) and a good cycling performance as an anode material for lithium-ion batteries. Coating InSn4 with carbon can increase the reversible specific capacity and improve significantly the rate capability. The InSn4/C composite displays a stable specific capacity of ca. 600 mAhg?1. In consideration of the simple and moderate synthesis route and the mass productive feature, the InSn4/C composite is a promising anode material for lithium-ion batteries.  相似文献   

12.
A series of spherical LiNi0.8Co0.15Ti0.05O2 cathode materials were synthesized through co-oxidation-controlled crystallization method followed by solid-state reaction at different calcination temperatures under oxygen flowing. The crystal structure and particles morphology of the as-prepared powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. All samples correspond to the layered α-NaFeO2 structure with R-3m space group. The LiNi0.8Co0.15Ti0.05O2 prepared at 800 °C presents a better hexagonal ordering structure and better spherical particles and possesses a high tap density of 3.22 g cm?3. Meanwhile, the NCT-2 sample exhibits an advanced electrochemical performance with an initial discharge capacity of 174.2 mAh g?1 and capacity retention of 86.7 % after 30 cycles at 0.2 C.  相似文献   

13.
Highly dispersed ZnO nanoparticles were prepared by a versatile and scalable sol-gel synthetic technique. High-resolution transmission electronic microscopy (HRTEM) showed that the as-prepared ZnO nanoparticles are spherical in shape and exhibit a uniform particle size distribution with the average size of about 7 nm. Electrochemical properties of the resulting ZnO were evaluated by galvanostatic discharge/charge cycling as anode for lithium-ion battery. A reversible capacity of 1652 mAh g?1 was delivered at the initial cycle and a capacity of 318 mAh g?1 was remained after 100 cycles. Furthermore, the system could deliver a reversible capacity of 229 mAh g?1 even at a high current density of 1.5 C. This outstanding electrochemical performance could be attributed to the nano-sized features of highly dispersed ZnO particles allowing for the better accommodation of large strains caused by particle expansion/shrinkage along with providing shorter diffusion paths for Li+ ions upon insertion/deinsertion.  相似文献   

14.
Three-dimensional hierarchical Co3O4@C hollow microspheres (Co3O4@C HSs) are successfully fabricated by a facile and scalable method. The Co3O4@C HSs are composed of numerous Co3O4 nanoparticles uniformly coated by a thin layer of carbon. Due to its stable 3D hierarchical hollow structure and uniform carbon coating, the Co3O4@C HSs exhibit excellent electrochemical performance as an anode material for lithium-ion batteries (LIBs). The Co3O4@C HSs electrode delivers a high reversible specific capacity, excellent cycling stability (1672 mAh g?1 after 100 cycles at 0.2 A g?1 and 842.7 mAh g?1 after 600 cycles at 1 A g?1), and prominent rate performance (580.9 mAh g?1 at 5 A g?1). The excellent electrochemical performance makes this 3D hierarchical Co3O4@C HS a potential candidate for the anode materials of the next-generation LIBs. In addition, this simple synthetic strategy should also be applicable for synthesizing other 3D hierarchical metal oxide/C composites for energy storage and conversion.  相似文献   

15.
Yingqiong Yong  Li-Zhen Fan 《Ionics》2013,19(11):1545-1549
Silicon/carbon nanocomposites are prepared by dispersing nano-sized silicon in mesophase pitch and a subsequent pyrolysis process. In the nanocomposites, silicon nanoparticles are homogeneously distributed in the carbon networks derived from the mesophase pitch. The silicon/carbon nanocomposite delivers a high reversible capacity of 841 mAh g?1 at the current density of 100 mA g?1 at the first cycle, high capacity retention of 98 % over 30 cycles, and good rate performance. The superior electrochemical performance of nanocomposite is attributed to the carbon networks with turbostratic structure, which enhance the conductivity and alleviate the volume change of silicon.  相似文献   

16.
Lithium nitrate (LiNO3) is reported as an effective additive to protect lithium anode in rechargeable lithium-sulfur battery. However, for its strong oxidation, cells containing LiNO3 still suffer from safety problems and poor cycle performance since LiNO3 can be reduced on cathode to form some irreversible products. In this study, a facile and effective method to pre-passivate lithium anode is proposed by simply immersing lithium plates in LiNO3 solution. The electrochemical properties show that the pretreatment is favorable for the construction of a protection layer on the surface of lithium anode. Cells with pretreated lithium show the coulombic efficiency of 80.6 % in the first cycle and 87.2 % after 100 cycles, far higher than the one with pure lithium. The discharge capacity is retained at 702 mA h g?1 after 100 cycles, and the result is better than those directly adding LiNO3 in electrolyte. It is believed that these improvements result from the high stability of surface film during the charge and discharge process, which can stabilize the structure of anode and suppress the shuttle effect.  相似文献   

17.
The influence of post-calcination treatment on spinel Li4Ti5O12 anode material is extensively studied combining with a ball-milling-assisted rheological phase reaction method. The post-calcinated Li4Ti5O12 shows a well distribution with expanded gaps between particles, which are beneficial for lithium ion mobility. Electrochemical results exhibit that the post-calcinated Li4Ti5O12 delivers an improved specific capacity and rate capability. A high discharge capacity of 172.9 mAh g?1 and a reversible charge capacity of 171.1 mAh g?1 can be achieved at 1 C rate, which are very close to its theoretical capacity (175 mAh g?1). Even at the rate of 20 C, the post-calcinated Li4Ti5O12 still delivers a quite high charge capacity of 124.5 mAh g?1 after 50 cycles, which is much improved over that (43.9 mAh g?1) of the pure Li4Ti5O12 without post-calcination treatment. This excellent electrochemical performance should be ascribed to the post-calcination process, which can greatly improve the lithium ion diffusion coefficient and further enhance the electrochemical kinetics significantly.  相似文献   

18.
Jinxue Guo  Fenfen Li  Jing Sui  Haifeng Zhu  Xiao Zhang 《Ionics》2014,20(11):1635-1639
Three-dimensional Co3O4-graphene frameworks (3D-CGFs) are prepared with a one-pot hydrothermal method. Co3O4 particles are in situ anchored on graphene sheets, and the resulting composite self-assembles into 3D architecture during the hydrothermal treatment. Scanning electron microscope, transmission electron microscope, powder X-ray powder diffraction, and Raman spectroscopy are employed to characterize the sample. When tested as anode materials for lithium-ion batteries, 3D-CGFs demonstrate remarkable electrochemical lithium storage properties, such as large and stable reversible capacity (>530 mAh g?1 at 500 mA g?1 over 300 cycles), good capacity retention (88 % retention after 300 cycles at 500 mA g?1 compared with the 4th cycle), excellent high-rate performance (515 mAh g?1 at 1 A g?1), making it a promising candidate for high-performance anode materials, especially for high-rate lithium-ion batteries.  相似文献   

19.
Nitrogen-doped anatase titanium oxide (N-TiO2) with enhanced electronic conductivity induced by titanium nitride (TiN) thin layer coating was employed as high-performance anode material for sodium-ion batteries. The TiN thin layer can not only dramatically increase the electronic conductivity among crystal grains but also alleviate the volume expansion to consolidate the structure during long-term sodiation and desodiation process. The composite exhibits an excellent electrochemical performance, delivering a high specific capacity of 226.9 mA h g?1 at 0.1 C and owning excellent rate capability of 158.3 mA h g?1 at 10 C high rate. Moreover, the composite has no obvious capacity decay after 500 cycles at 1 C, showing its superior cycling performance. The enhancement of electrochemical performance may be attributed to the faster kinetics of sodium ion sodiation/desodiation, which could be a result of enhanced electronic conductivity due to the formation of TiN thin layer coating.  相似文献   

20.
Niobium-doped MnO2/reduced graphene oxide (Nb-MnO2/RGO) composite has been successfully synthesized via a simple microwave radiation method. The samples were systematically studied by X-ray diffraction (XRD), thermogravimetric analysis (TG), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM), and electrochemical measurements. As the anode material for lithium-ion batteries, the Nb-MnO2/RGO (molar ratio of Mn/Nb?=?50:1) (NMG50) showed an outstanding reversible discharge capacity of 556.6 mAh g?1 after 50 cycles with a capacity retention of 77% at a charge-discharge rate of 0.1 A g?1 and the reversible discharge capacity can still retain 223.3 mAh g?1 at a current of 1 A g?1, which is much higher than those for Nb-MnO2/RGO (molar ratio of Mn/Nb?=?10:1) (NMG10) and undoped MnO2/RGO (MG). The improved electrochemical performance could be attributed to the proper amount of Nb doping, which could enhance both the conductivity and the structure stability of MnO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号