首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a technique to investigate the adhesion of thin coatings which combines digital speckle pattern interferometry and an indentation test. The proposed approach is based on the measurement of the local displacement field produced by a microindentation introduced on the coated surface of a specimen. It is experimentally demonstrated that the buckling of the coating generated by the microindentation depends on its adhesion to the substrate. Experiments carried out in specimens with different conditions in the coating–substrate interface show that digital speckle pattern interferometry can be used to determine the size of the buckled region and to give a measurement of the coating adhesion strength.  相似文献   

2.
The paper presents the effect of HPD laser treatment on the microstructure and selected properties of the PVD CrN, (Ti,Al) and Ti(C,N) coatings deposited onto hot-work tool steel substrates. The microstructure and surface topography of the investigated samples are characteristic of the diversified morphology connected with the applied laser beam power. Employment of laser beam at 0.7 kW power to the laser treatment of samples with Ti(C,N) coatings causes clear coating adhesion growth because of the diffusive processes induced by heat release. Because of the higher value of the (Ti,Al)N absorption coefficient one can state that the observed substrate materials change and finally coatings destruction in case of those samples is the most noticeable. The moderate effect of the laser beam treatment of the hot-work tool steel with the PVD coating was observed for CrN coatings. However, for laser beam power above 0.5 kW differences in the thermal expansion coefficients of the substrate materials and coatings generate coating crackings.  相似文献   

3.
Three functional coatings (namely Al-C, Si-P-Al and P-F-Al coating) were fabricated by microarc oxidation method on Ti6Al4V alloy in different aqueous solutions. The microstructure, phase and chemical composition of coatings were investigated using scanning electron microscope, X-ray diffraction and energy dispersive spectroscopy. The interface adhesion failure mode of the coating is revealed by shear, tensile and thermal shock methods. The coatings exhibit high adhesion strength by the quantitative shearing test, registering as 110, 70, and 40 MPa for Al-C, Si-P-Al and P-F-Al coating, respectively. The tensile test of the coated samples shows that microarc oxidation treatment does not significantly deteriorate mechanical properties of substrate titanium alloy. The observations of the coating failure after subjected to the identical tensile elongation of 3.0% are well in agreement with those results of the shear test. The thermal cycle test indicates that all the coatings have good anti-thermal shocking properties.  相似文献   

4.
The present study has been conducted in order to determine the influence of superalloy substrate roughness on adhesion and oxidation behavior of magnetron-sputtered NiCoCrAlY coatings. Six types of coating samples with different substrate roughness were tested. The surface roughness and real surface area of both the substrates and coatings were studied by atomic force microscopy (AFM) techniques. The scratch tests performed at progressive loads were employed to evaluate the adhesion of the coatings. Cyclic oxidation tests were performed at 1100 °C in air for 50 cycles, each cycle consisting of 1 h heating in the tube furnace followed by 15 min cooling in the open air. The AFM measurements exhibit that the surface roughness of the sputtered NiCoCrAlY coating increases with the increasing of the superalloy substrate roughness. The NiCoCrAlY coatings present slightly lower roughness than the corresponding superalloy substrate. The scratch adhesion tests indicate that the coatings on substrates with a smoother surface possess better adhesion than on those with a rougher surface. Both the real surface area and oxidation weight gain of the coatings decrease with the decreasing of the superalloy substrate roughness. The NiCoCrAlY coating sputtered on the superalloy substrate with lower roughness provides relatively higher antioxidant protection than that provided by the coating with rougher substrate.  相似文献   

5.
Laser induced decohesion of coatings: probing by laser ultrasonics   总被引:1,自引:0,他引:1  
Rosa G  Oltra R  Nadal MH 《Ultrasonics》2002,40(1-8):765-769
The aim of the present study is to investigate a conventional laser-ultrasonics technique for the determination of intrinsic properties of oxide coatings and their adhesion strength on a metallic substrate. The good agreement between experiments and computations in an epicenter configuration allows determining the longitudinal wave velocity as well as the Young's modulus of the oxide coatings versus the porosity. For a critical value of the laser energy, a breakdown at the coating-substrate interface is generated by the laser irradiation. The critical tensile stress field developed at the coating/substrate interface, which leads to the interfacial fracture, can be easily calculated. The value of the practical adhesion which is defined is found to be in accordance with those obtained by classic contact techniques (tensile adhesion test, indentation, bending test). Finally, this work demonstrates that this quantitative, contactless test fits well to simultaneously characterise the oxide coatings and evaluate the coating-substrate adhesion.  相似文献   

6.
陈书赢  王海斗  徐滨士  康嘉杰 《物理学报》2014,63(15):156801-156801
为研究结合界面形貌与涂层体系结合强度之间的关系,采用超音速等离子喷涂设备制备Fe基合金涂层,选用(Ni,Al)涂层作为黏接底层.通过改变Ar气流量,获得不同粗糙表面的黏接底层.采用对偶件拉伸法测量复合合金涂层体系的结合强度,同时引入分形理论对结合界面形貌进行定量表征,结果表明:黏接底层能显著提高涂层的结合强度,随着Ar气流量的升高,黏接底层表面分形维数不断降低,涂层体系的结合强度则呈现出先增大后减小的趋势.  相似文献   

7.
The formation of coagulates from the fine fractions of an Al powder on the microroughnesses of the steel surface was investigated via scanning electron microscopy. The coagulates improve the adhesion strength of coatings due to the van der Waals interaction. It is shown that a plasticizer increases the adhesion strength of coatings because its addition decreases internal stresses in the composite and at the interface between the steel surface and the coating.  相似文献   

8.
By using a digital image correlation technique, the full/local field strain in a brittle coating/ductile substrate system during tension has been successfully monitored. One of the most important experimental results indicates that the distribution of interfacial shear stress in the segmented coating is antisymmetric about the center, which clarifies several controversial assumptions introduced in theoretical models. Two key mechanical properties of thermal barrier coatings, fracture strength in coating and interfacial adhesion strength, were determined as 35.0 ± 4.6 and 14.1 ± 3.2 MPa, respectively, which are consistent with available experimental data.  相似文献   

9.
Conversion coatings modified by deposits of electrolytic alumina added or not with yttria and/or zirconia, have been studied which are well known for their resistance to chemical attack and high temperature. Conversion coating, characterised by a particular morphology and strong interfacial adhesion with the substrate, facilitate the electrochemical deposition of ceramic layers and enhance their adhesion to the substrate. Zirconia–alumina coating behaviour at 1000°C is similar to that of alumina coating; from 800°C, the chromium diffuses from the stainless steel through the electrolytic refractory coating up to the external interface, provokes discontinuities and can modify its protective character. Yttrium stabilises the cubic and the tetragonal form of the zirconia; so, during cooling, the phase transformation near 1000°C of tetragonal zirconia to monoclinic form cannot take place.  相似文献   

10.
This paper presents a feasibility study to assess whether digital speckle pattern interferometry could be used as a possible technique to investigate the adhesive performance of coatings. The approach is based on the measurement of the deflections produced by a pre-notched coated specimen subjected to a four-point bending test. When the bending load is increased, a delamination between the coating and the substrate is propagated with its length depending on the adhesion strength. Experiments carried out with specimens having simulated delaminations confirm that digital speckle pattern interferometry can be used to estimate the delamination length.  相似文献   

11.
The corrosion stability of vinyltriethoxysilane/epoxy coating protective system on aluminium is strongly related to the strength of bonds forming at the metal/organic coating interface. This article is a study of adhesion, composition, electrochemical and transport properties of epoxy coatings electrodeposited on bare aluminium and aluminium pretreated by vinyltriethoxysilane (VTES) during exposure to 3% NaCl. The VTES film was deposited on aluminium surface from 2% vinyltriethoxysilane solution during 30 s. From the values of adhesion strength (pull-off test), time dependence of pore resistance and coating capacitance of epoxy coating (impedance measurements) and diffusion coefficient of water through epoxy coating (gravimetric liquid sorption measurements), the influence of VTES sublayer on the corrosion stability of the electrodeposited epoxy coating was shown.The work discusses the role of the VTES pretreatment in the enhanced adhesion and corrosion stability of epoxy cataphoretic coating. The electrochemical results showed that the aluminium pretreatment by VTES film improved barrier properties of epoxy coating (greater pore resistance and lower coating capacitance). The lower value of diffusion coefficient of water through epoxy coating indicates the lower porosity, while the smaller adhesion reduction points to better adhesion of epoxy coating on aluminium pretreated by VTES film. The composition of the deposited coatings investigated by XPS enabled the clarification of the bonding mechanism.  相似文献   

12.
Hydroxyapatite (HA) coatings with different surface roughnesses were deposited on a Ti substrate via aerosol deposition (AD). The effect of the surface roughness on the cellular response to the coating was investigated. The surface roughness was controlled by manipulating the particle size distribution of the raw powder used for deposition and by varying the coating thickness. The coatings obtained from the 1100 °C-heated powder exhibited relatively smooth surfaces, whereas those fabricated using the 1050 °C-heated powder had network-structured rough surfaces with large surface areas and were superior in terms of their adhesion strengths and in vitro cell responses. The surface roughness (Ra) values of the coatings fabricated using the 1050 °C-heated powder increased from approximately 0.65 to 1.03 μm as the coating thickness increased to 10 μm. The coatings with a rough surface had good adhesion to the Ti substrate, exhibiting high adhesion strengths ranging from 37.6 to 29.5 MPa, depending on the coating thickness. The optimum biological performance was observed for the 5 μm-thick HA coating with an intermediate surface roughness value of 0.82 μm.  相似文献   

13.
《Composite Interfaces》2013,20(1):19-40
In this paper the micro-scratch test is simulated by ANSYS finite element code for thin hard coating on substrate composite material system. Coulomb friction between indenter and material surface is considered. The material elastic-plastic properties are taken into account. Contact elements are used to simulate the frictional contact between indenter and material surfaces, as well as the frictional contact after the detachment of coating/substrate interfaces has taken place. In the case of coating/substrate interfaces being perfectly bonded, the distributions of interfacial normal stress and shear stress are obtained for the material system subjected to normal and tangential loading. In the case of considering the detachment of interfaces, the length of interfacial detachment and the redistribution of stresses because of interfacial detachments are obtained. The influences of different frictional coefficients and different indenter moving distances on the distributions of stresses and displacements are studied. In the simulation, the interfacial adhesion shear strength is considered as a main adhesion parameter of coating/substrate interfaces. The critical normal loading from scratch tests are directly related to interfacial adhesion shear strengths. Using the critical normal loading known from experiments, the interfacial adhesion shear strength is obtained from the calculation. When the interfacial adhesion shear strength is known, the critical normal loading is obtained for different coating thicknesses. The numerical results are compared with the experimental values for composite materials of thin TiN coating on stainless steel substrate.  相似文献   

14.
In this study, 304 stainless steel coatings were deposited on interstitial-free steel substrate by cold spraying method. The effect of annealing treatment on microstructure, microhardness, ultimate tensile strength and fracture performance of the coatings were studied. The results showed that annealing treatment had made a dominant contribution to heal up the incomplete interfaces between the deposited particles. Both of the microstructure and the mechanical properties have been obviously optimized by annealing treatment. In addition, the coating microhardness decreased from 345 HV0.2 for the as-sprayed coating to 201 HV0.2 for the annealed coating. The coating ultimate tensile strength increased from 65 MPa for the as-sprayed coating to 357 MPa for the annealed coating, which resulted from the increase of the metallurgically bonded areas in the coating induced by annealing treatment. Fracture morphology of the coatings also revealed that annealing treatment changed the fracture character of the cold sprayed 304 stainless steel coating from brittle type to plastic type.  相似文献   

15.
In situ formation of ceramic coatings on Q235 carbon steel was achieved by plasma electrolytic oxidation (PEO) in carbonate electrolyte and silicate electrolyte, respectively. The surface and cross-section morphology, phase and elemental composition of PEO coatings were examined by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The bond strength of the coating was determined using a direct pull-off test. The hardness as well as tribological properties of the ceramic coating was primarily studied. The results indicated that the coating obtained in carbonate electrolyte was Fe3O4, while the coating achieved from silicate electrolyte was proved to be amorphous. Both kinds of coatings showed coarse and porous surface. The Fe3O4 coatings obtained in carbonate electrolyte showed a high bonding strength to the substrate up to 20 ± 2 MPa and the value was 15 ± 2 MPa for the amorphous coatings obtained in carbonate electrolyte. The micro hardness of the amorphous coating and the Fe3O4 coating was 1001 Hv and 1413 Hv, respectively, which was more than two and three times as that of the Q235 alloy substrate (415 Hv). The friction coefficient exhibited by amorphous coating and Fe3O4 coating was 0.13 and 0.11, respectively, both lower than the uncoated Q235 substrate which ranged from 0.17 to 0.35.  相似文献   

16.
Design and preparation of frequency doubling antireflection coating with different thicknesses of interlayer were investigated for LiB3O5 (LBO) substrate. The design was based on the vector method. The thickness of the inserted SiO2 interlayer could be changed in a wide range for the four-layer design with two zeros at 1064 and 532 nm. The coatings without any interlayer and with 0.1 quarter-wave (λ/4), 0.3 λ/4, 0.5 λ/4 SiO2 interlayer were deposited respectively on LBO by using electron beam evaporation technique.All the prepared coatings with SiO2 interlayer indicated satisfying optical behavior. This expanded our option for the thickness of an interlayer when coating on LBO substrate. The prepared films with SiO2 interlayer showed better adhesion than that without any interlayer. The thickness of the interlayer affected the adhesion, the adhesion for the coating with 0.5 λ/4 SiO2 interlayer was not as good as the other two.  相似文献   

17.
The commercial application of rare earth magnets has been in part held back by their poor corrosion resistance. As part of efforts to overcome this problem two types of nickel coatings were electroplated on the surface of Nd2Fe14B substrates, one from an acidic plating solution and the other from an alkaline solution. The corrosion characteristics of both coatings were evaluated both by electrochemical potentiodynamic polarisation and by physical exposure to high-humidity environments. The results showed that both coatings enhanced the corrosion resistance of substrate. However, both the degree of protection afforded by the coating and the strength of its adhesion to the substrate strongly depended on the chemical composition of the original plating solution. The coating plated from the acidic solution provided a high degree of protection against both aqueous and atmospheric corrosion, whilst that plated from the alkaline solution behaved only marginally better than the bare substrate. It was postulated that the poor performance of the coatings plated from the alkaline bath could have been due to the spontaneous formation of a passive oxide film between the Nd2Fe14B substrate and the nickel coating.  相似文献   

18.
The influence of cobalt on the phase composition and adhesion strength of polycrystalline diamond coatings has been studied using scanning electron microscopy, Raman spectroscopy, and X-ray microanalysis. The coatings have been deposited on WC–Co hard alloy substrates in glow discharge plasma. It has been found that the catalytic amorphization of carbon only takes place during the direct synthesis of the diamond coating, when the cobalt vapor pressure over the substrate is high and the cobalt-related degradation of the synthesized diamond is absent.  相似文献   

19.
Ceramic thermal protection coatings on Ti6Al4V alloy were achieved by micro-arc oxidation (MAO) in the presence of Co(CH3COO)2. The morphology, crystallographic structure and chemical composition of the coating were characterized by various techniques. The thermal emission of the coating was measured by Fourier transform spectrometer apparatus. The bonding strength between the coating and substrate was studied, together with the thermal shock resistance of the coating. The results indicate that the content of Co in the coating layer significantly affects its thermal emissivity. Higher concentration of Co(CH3COO)2 in electrolytes leads to more Co ions into the coating, which enhances the emissivity of the coating. All the coatings show bonding strength higher than 10 MPa. In addition, the coating remains stable over 40 cycles of thermal shocking. The coating formed at 4 g/L Co(CH3COO)2 displays an average spectral emissivity value more than 0.9 and bonding strength about 10.4 MPa.  相似文献   

20.
 采用脉冲紫外激光(XeCl,308nm)表面消融预处理方法以硬质合金为衬底制备了金刚石涂层刀具。利用压痕法对涂层结合强度进行了测试,得到了最佳预处理工艺条件。采用碳化硅增强铝合金材料对制备的金刚石涂层刀具进行了实际切削性能实验。实验结果表明:脉冲紫外激光表面消融预处理方法的采用对刀具的金刚石薄膜涂层附着强度的提高有很大的帮助。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号