首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Total cyanide species are determined in a flow injection system which includes UV-photodissociation, gas-diffusion separation and spectrofluorimetric detection. Without the irradiation step, only cyanide easily released in acid medium, i.e. labile cyanide, is determined. Cyanide diffuses through a microporous PTFE membrane from an acid donor stream to a sodium hydroxide acceptor stream. Then, the transferred cyanide reacts with ?o-phthalaldehyde and glycine to form a highly fluorescent isoindole derivative. Complete cyanide recoveries were obtained for the most important metal cyanide complexes found in environmental samples, excepting cobaltocyanide. The sampling frequency for total cyanide was 4 samples h–1 and the detection limit was 0.4 μg L–1. Recoveries of total cyanide from river water obtained with this method are about 90% of those obtained with APHA Method 4500-CN C for total cyanide. Received: 10 February 1999 / Revised: 7 May 1999 / Accepted: 13 May 1999  相似文献   

2.
Flow injection sample processing is used with fluorescence detection for the determination of total primary amines in seawater and nectar. The effects of carrifer stream flow rate and dispersion tube length on sensitivity and sampling rates were studied. Relative responses of several amino acids and other primary amines were determined using two dispersion tube lengths. Linear calibration curves were obtained over the ranges 0–10-6 M and O–1O-5 M glycine. Precisions of better than 2% at 10-6 M and a detection limit of 1 × lO-8 M glycine were obtained. Applications to the analysis of seawater from the vicinity of a baited lobster trap and diluted nectar samples from Erythrina sp. are described.  相似文献   

3.
Hydrogen cyanide is liberated from aqueous samples by reaction with sulphuric acid and transferred by a stream of nitrogen to a silver porous membrane electrode. Some HCN passes through the membrane into an alkaline dicyanoargentate solution; the cyanide ion produced causes a decrease in the equilibrium Ag+ concentration and the change of potential is related to the amount of cyanide in the sample. The detection limit is 3.0 ng ml?1 cyanide in the injected solution; the relative standard deviation is 0.82% for 17 ng of cyanide. Sulphide interferes (as H2S) but can be removed on a lead acetate column.  相似文献   

4.
Cloud point extraction (CPE) has been used for the preconcentration and indirect quantification of cyanide after the formation of a ion-associate complex with 3-amino-7-diethylamino-8,9-benzo-2-phenoxazine chloride (Nile blue, NB+) in the presence of copper (II) ions, and later analysis by flame atomic absorption spectrometry (FAAS) using polyethyleneglycolmono-p-nonylphenylether (PONPE 7.5) as extracting surfactant. The chemical variables affecting the separation phase and the viscosity affecting the detection process were optimized. At pH 5.5, preconcentration of only 50 mL of sample in the presence of 0.04 % (w/v) PONPE 7.5 and 5.64 × 10?5 mol L?1 Nile blue permitted the detection of 3.75 μg L?1 cyanide. The enhancement factor was 64.7 for cyanide. The proposed method was successfully applied to the determination of free cyanide in environmental water samples. The method was compared with the pyridine–barbituric acid method and the paired t test was used to determine whether the results obtained by the two methods differ significantly.  相似文献   

5.
An automated flow-injection system with gas diffusion separation and preconcentration and spectrophotometric detection is described for the determination of total cyanide in waste waters. An unstable red intermediate product of the reaction of cyanide with isonicotinic acid and 3-methyl-1-phenyl-2-pyrazolin-5-one is used instead of the conventional blue final product to improve the efficiency. A novel combination of a gas-diffusion separator with the sampling valve enables efficient on-line separation, preconcentration and sampling of cyanide. The sampling frequency is 40 h?1 and the detection limit is 0.006 μg ml?1 (3σ) when a 2-ml sample is taken and a preconcentration factor of 3.5 is achieved. The relative standard deviation is 1.4% (n = 22) at the 0.5 μg ml?1 level. Results obtained with the proposed method are in good agreement with the standard manual spectrophotometric method. Interference studies show that in the presence of 1,10-phenanthroline, most potential interferents present in appreciable amounts do not interfere, but the interference from cobalt is not overcome in this system.  相似文献   

6.
A CE method was developed for the determination of total (free and weakly bound) cyanide in electroplating solutions based on the use of a cationic surfactant (TTAB) and complexation with Ni(II)-NH3 solutions to Ni(CN)4 2–. Both direct complexation and cyanide distillation combined with complexation were tested. Under optimized conditions, this method is time-saving compared to standard methods. Total cyanide determined by CE had detection limits (with respect to the initial sample concentration) of 0.5 μg/mL for direct complexation and 50 ng/mL for distillation combined with complexation. Total cyanide and cyanide not amenable by chlorination (CNAC) were determined in real samples from spent electroplating baths.  相似文献   

7.
Soluble cyanide can be determined ins oil samples by differential pulse polarography. Interference from sulphide is avoided by treating the alkali-stabilized sample solutions with lead carbonate prior to distillation of cyanide from the soil extract. Less than 10 μg l?1 cyanide can be determined accurately, depending on teh weight of sample taken and the final collection volume. For a 100-g soil sample, the detection limit is 5 ng g?1, which is similar to the limit of a standard spectrophotometric method. Relative standard deviations are 1–3%.  相似文献   

8.
Archana Jain 《Talanta》2010,82(2):758-65
Headspace single-drop microextraction has been used for the determination of cyanide with ninhydrin in combination with fibre-optic-based cuvetteless microspectrophotometry which accommodates sample volume of 1 μL placed between the two ends of optical fibres, and has been found to avoid salient drawbacks of batch methods. This method involved hydrocyanic acid formation in a closed vial, and simultaneous extraction and reaction with 2 μL drop of ninhydrin in carbonate medium suspended at the tip of a microsyringe needle held in the headspace of the acidified sample solution. The method was linear in range 0.025-0.5 mg L−1 of cyanide. The headspace reaction was free from the interference of substances, e.g., thiocyanate, hydrazine sulphate, hydroxylammonium chloride and ascorbic acid. Sulphide was masked by cadmium sulphate, nitrite by sulphamic acid, sulphite by N-ethylmaleimide, and halogens by ascorbic acid. The limit of detection was found to be 4.3 μg L−1 of cyanide which was comparable to existing most sensitive methods for cyanide. However, the present method is far more simple. The method was applied to acid-labile and metal cyanides complexes by treatment with sulphide when metal sulphides were precipitated setting cyanide ion free, and to iron(II) and (III) cyanide complexes by their decomposition with mercury(II), the mercury(II) cyanide formed was then determined. These pre-treatment methods avoided cumbersome pre-separation of cyanide by methods such as distillation or gas diffusion. The overall recovery of cyanide in diverse samples was 97% with RSD of 3.9%.  相似文献   

9.
《Analytical letters》2012,45(12):1023-1037
Abstract

A simple procedure for the determination of low levels of total cyanide in effluent samples has been developed. After distillation of the cyanide from the sample, as hydrocyanic acid, the cyanide is determined with coulometrically generated iodine using a biamperometric end point detection system. As little as 0.06mg/l total cyanide can be measured using the procedure. The method obviates the need for calibration curves and does not require special reagents.

Silver (I) was determined to be an effective catalyst for the decomposition of bound cyanides in the distillation procedure.  相似文献   

10.
A method for the determination of cyanide in blood plasma by differential pulse polarography (DPP) is described without a drastic acidification of the sample. Cyanide was determined as tetracyanonickelate(II)-anion complex after a microwave-acid assisted cleanup and a selective complex extraction in a polyethylene methylene blue (PE-MB) impregnated column. The cyano complex was eluted from the column with water/acetonitrile and determined by pulse-polarography at –380 mV (Ag/AgCl). The linear range of calibration was obtained from 1.2 to 9.6 μg of cyanide with r = 0.99 and RSD = 9% of 1.2 μg of cyanide. A detection limit of 40 μg L–1 was calculated and the recoveries of cyanide from spiked samples were about 80%. This method was compared with the classical pyridine-pyrazolone method.  相似文献   

11.
A flow-injection system for the simultaneous determinationof cyanide and thiocyanate is described. A microporous tubular PTFE membrane module with an outer casing was constructed and included inthe system. Cyanide and thiocyanate diffuse thourgh the membrane wall from the phosphoric acid donor stream to a phosphate or carbonate buffer acceptor stream. Percentage transference of cyanide and thiocyanate were 68% and 59%, respectively, at pH 6.0. At pH 8.1, the percentage transference of cyanide was only 19%. The transferred cyanide and thiocyanate are determined by a pyridine/barbituric acid method. Thiocyanate reacts slowly with chloramine-T at pH 8.1, so that cyanide can be determined without interference from thiocyanate. Total cyanide and thiocyanate are determined at pH 6.0. The detection limits (S/N = 3) are 0.3 μM cyanide and 0.2 μM thiocyanate at pH 6.0, and 5 μM cyanide at pH 8.1. A mechanism for the transference thourgh the membrane is discussed. Bromine interferes with the determination of cyanide and thiocyanate at both pH 6.0 and 8.1. Hexacyanoferrate(II) and hexacyanoferrate(III) interfere at pH 8.1, but not at pH 6.0. Cyanate, oxaloacetate, oxalate, tartrate, albumin, globulin and lysozyme do not interfere.  相似文献   

12.
Ethyl chloroformate was used as a derivatizing reagent to develop a simple and sensitive gas chromatographic procedure for the determination of tranexamic acid. Analysis was performed on an HP-5 column (30 m × 0.32 mm i.d.) coupled with mass spectrometric detection. Linear response was obtained from 60 to 500 pg with a limit of detection of 20 pg tranexamic acid injected onto the column. Aminocaproic acid was used as an internal standard. Tranexamic acid was determined in pharmaceutical preparations and blood samples after therapy with the drug. Appoximately 2.0 μg mL?1 was found in blood samples. Relative standard deviation for analysis was within 0.1–0.4% (n = 3). Recovery of tranexamic acid added to deprotenized serum was 99.6% with an RSD of 1.2–1.6% (n = 3). Pharmaceutical additives and amino acids, if also present, did not affect the determination.  相似文献   

13.
Glutathionylcobalamin (GSCbl) is a vitamin B12 derivative that contains glutathione as the upper axial ligand to cobalt via a Co–S bond. In the present study, we discovered that cyanide reacted with GSCbl, generating cyanocobalamin (CNCbl) and reduced glutathione (GSH) via dicyanocobalamin (diCNCbl) intermediate. This reaction was induced specifically by the nucleophilic attack of cyanide anion displacing the glutathione ligand of GSCbl. Based on the reaction of GSCbl with cyanide, we developed new methods for the detection of cyanide. The reaction intermediate, violet-coloured diCNCbl, could be applied for naked eye detection of cyanide and the detection limit was estimated to be as low as 520 μg L?1 (20 μM) at pH = 10.0. The reaction product, CNCbl, could be applied for a spectrophotometric quantitative determination of cyanide with a detection limit of 26 μg L?1 (1.0 μM) at pH = 9.0 and a linear range of 26–520 μg L?1 (1.0–50 μM). In addition, the other reaction product, GSH, could be applied for a fluorometric quantitative determination of cyanide with a detection limit of 31 μg L?1 (1.2 μM) at pH = 9.0 and a linear range of 31–520 μg L?1 (1.2–20 μM). These new GSCbl-based methods are simple, highly specific and sensitive with great applicability for the detection of cyanide in biological and non-biological samples.  相似文献   

14.
A novel flow-injection analysis (FIA) system has been developed for the rapid determination of the volatile acidity of some fermentation products like vinegars and juices. The proposed method is based on the diffusion of volatile acids, mainly acetic acid, across a PTFE gas-permeable membrane from an acid stream into an alkaline stream, and the acids trapped in the acceptor solution are determined online by a bulk acoustic wave impedance sensor based on changes in the conductivity of the solution. It exhibited a linear frequency response up to 10 mmol · L–1 acetic acid with a detection limit of 50 μmol · L–1, and the precision was better than 1% (RSD) at a through-put of 72 h–1. The effects of operating voltage for the detector, cell constant of the electrode, composition of acceptor stream, flow rates and temperature on the FIA performance were also investigated.  相似文献   

15.
A silver/silver sulphide electrode is prepred quickly by holding a cleaned silver wire in vapours from molten sulphur. In 1000–10 mg l?1 cyanide solutions, the electrode exhibits a linear E/log CCN function which becomes slightly sinusoidal for 10–0.1 mg l–1 cyanide. The average slope is slightl super-Nerstian (10 mV/decade concentration). The applicability of the electrode is demonstrated for the determinations of microgram quantities of water-soluble cyanide from the Prussian blue pigments which are constituents of externally applied cosmetics. The home-made electrode provides results agreing with those obtained with commercially available electrodes.  相似文献   

16.
The total metal concentration and bioaccessible concentration of Cr, Mn, Fe, Cu, Zn, Se in Momordica charantia, Asparagus racemosus, Terminalia arjuna and Syzyzium cumini were measured by instrumental neutron activation analysis and by inductively coupled plasma mass spectrometry analysis (ICP-MS). The bioaccessible concentrations were determined in the gastrointestinal digest obtained after treating dried powdered samples sequentially in gastric and intestinal fluid of porcine origin at physiological conditions. The bioaccessible concentration of Fe was in the range of 58–67 mg kg?1, Mn was 10.2–14.6 mg kg?1, Cu was 3.7–4.8 mg kg?1 and Zn was 10.6–18.4 mg kg?1, were within the safety limits set for vegetable food stuff set by Joint FAO/WHO. The bioaccessibility of Zn, an essential element, was high (40–50 %) in M. charantia and in S. cumini. In addition, the total metal contents and bioaccessible concentration of Ni, Se, Cd and Pb in these samples were measured by ICP-MS. The total Cd content in S. cumini (2.6 ± 0.2 mg kg?1) and its bioaccessible concentration (0.6 mg kg?1) were strikingly high as compared to the other samples. Though total Hg contents were determined by ICP-MS, but their bioaccessible concentrations were below the detection limit (0.036 mg kg?1).  相似文献   

17.
An automated method for the determination of nitrate in waters with a microcomputer-based stopped-flow mixing system is described. Nitrate is reduced to nitrite with a copperized cadmium—silver alloy or cadmium tube column fitted to the stopped-flow system. Nitrite is determined using fast kinetic, multi-point or single-point procedures with N-(1-naphthyl)ethylenediamine dihydrochloride as the color reagent. Reduction time parameters are evaluated and optimized. Water samples in the range of 0.025–3 ppm NO-3—N can be processed with a throughput of up to 100 samples per hour and a detection limit of 0.013 ppm. Interference studies show that cyanide; dichromate, iodide, sulfide, copper and tin ions cause negative results.  相似文献   

18.
A CE method was developed for the determination of total (free and weakly bound) cyanide in electroplating solutions based on the use of a cationic surfactant (TTAB) and complexation with Ni(II)-NH3 solutions to Ni(CN)4 2–. Both direct complexation and cyanide distillation combined with complexation were tested. Under optimized conditions, this method is time-saving compared to standard methods. Total cyanide determined by CE had detection limits (with respect to the initial sample concentration) of 0.5 μg/mL for direct complexation and 50 ng/mL for distillation combined with complexation. Total cyanide and cyanide not amenable by chlorination (CNAC) were determined in real samples from spent electroplating baths. Received: 5 February 1998 / Revised: 26 July 1998 / Accepted: 1 August 1998  相似文献   

19.
A sample preparation procedure for the quantitative determination of free and total cyanides in industrial effluents has been developed that involves hydrocyanic acid vapor generation via focused microwave radiation. Hydrocyanic acid vapor was generated from free cyanides using only 5 min of irradiation time (90 W power) and a purge time of 5 min. The HCN generated was absorbed into an accepting NaOH solution using very simple glassware apparatus that was appropriate for the microwave oven cavity. After that, the cyanide concentration was determined within 90 s using a well-known spectrophotometric flow injection analysis system. Total cyanide analysis required 15 min irradiation time (90 W power), as well as chemical conditions such as the presence of EDTA–acetate buffer solution or ascorbic acid, depending on the effluent to be analyzed (petroleum refinery or electroplating effluents, respectively). The detection limit was 0.018 mg CN l−1 (quantification limit of 0.05 mg CN l−1), and the measured RSD was better than 8% for ten independent analyses of effluent samples (1.4 mg l−1 cyanide). The accuracy of the procedure was assessed via analyte spiking (with free and complex cyanides) and by performing an independent sample analysis based on the standard methodology recommended by the APHA for comparison. The sample preparation procedure takes only 10 min for free and 20 min for total cyanide, making this procedure much faster than traditional methodologies (conventional heating and distillation), which are time-consuming (they require at least 1 h). Samples from oil (sour and stripping tower bottom waters) and electroplating effluents were analyzed successfully.  相似文献   

20.
A rapid spectrophotometric flow-injection method is described for the determination of cyanide and thiocyanate. The method involves a two-step procedure in which the total concentration of both species is first determined (using sodium isonicotinate/sodium barbiturate reagents), after which the cyanide is complexed with nickel(II) and thiocyanate is quantified separately; the cyanide concentration is calculated by difference. Various parameters such as pH, temperature and nickel concentration were optimized. The method is applied to synthetic sample solutions and the results are compared with those obtained by the ASTM distillation method. The limits of detection for cyanide and thiocyanate are 0.05 and 0.08 μg ml?1, respectively, with a sample throughput rate of 10 h?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号