首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The finite-strain theory has been used to study the creep behaviour of a thick-walled cylinder under large strains. The analysis is divided into two parts. In part 1 the creep deformation of a thick-walled cylinder of an anisotropic material subjected to internal pressure has been discussed. The effect of the anisotropy has been depicted graphically. It is found that the anisotropy of the material has a significant effect on the axial stress, strain and strain rate. Part 2 of the paper deals with the creep analysis of cylinders of either isotropic or anisotropic materials subjected to combined internal and external pressures. The effect of the anisotropy is found to be similar to that found in part 1. It is seen, however, that the introduction of external pressure results in decreasing the strain rate and thus increasing the life of the cylinder.  相似文献   

2.
Inelastic behavior of thick-walled cylinders subjected to nonproportionate loading was studied by the testing of specimens made of C1045 steel and of annealed copper. Several theories were reviewed. A closed-form solution proposed by Mendelson12 was used to predict external strains for open-end and closed-end thick-walled cylinders. An incremental theory proposed by Chu13 was used to provide incremental solutions for open-end thick-walled cylinders, and for cylinders subjected to nonproportionate loading. Test data for open-end and closed-end thick-walled cylinders made of C1045 steel and of annealed copper were in excellent agreement with the incremental theory. Larger values were predicted by use of the closed-form solution for circumferential strains than actual test data for open-end thick-walled cylinders at large depth of yielding. For cylinders subjected to nonproportionate loading, excellent agreement was indicated between the incremental theory and the experiments for the plot of axial load vs. circumferential strain for specimens made of both metals. Agreement between the incremental theory prediction of axial strains for the specimens made of annealed copper and test data is quite satisfactory. Larger values were predicted by the incremental theory for axial strain than experimental data for specimens made of C1045 steel. The error was conservative.  相似文献   

3.
A finite-total-strain, incompressible, analytical solution is presented to predict load-deformation relations for loads from zero to failure for thick-walled cylinders subjected to internal pressure, external pressure, axial load and torsion. The solution assumes that the material is an isotropic hardening material that obeys the von Mises yield condition. The flow law incorporates the prandtl-Reuss stressstrain relations and a loading function represented by the tension true-stress vs. true-strain diagram. Poisson's ratio is assumed to be equal to one-half for both elastic and plastic strains. The difference between the strains given by the incompressible solution and the correct strains are calculated for one set of elastic loads; the strains given by the incompressible solution are then corrected based on the assumption that each correction is proportional to the increase in the given component of load. Good agreement is indicated between the corrected incompressible solution and data obtained from cylinders made of either SAE 1045 steel, OFHC copper, or aluminum alloy 1100. Paper was presented at 1975 SESA Spring Meeting held in Chicago, IL on May 11–16. This investigation was funded by Rock Island Arsenal and was conducted at Research Directorate, GEN Thomas J. Rodman Laboratory, under the Laboratory Research Cooperative Program of ARO-D.  相似文献   

4.
Forlong, ductile, thick-walled tubes under internal pressure instabilities and final failure modes are studied experimentally and theoretically. The test specimens are closed-end cylinders made of an aluminum alloy and of pure copper and the experiments have been carried out for a number of different initial external radius to internal radius ratios. The experiments show necking on one side of the tubes at a stage somewhat beyond the maximum internal pressure. All tubes, except for one aluminum alloy tube, failed by shear fracture under decreasing pressure. The aluminum alloy tubes exhibited localized shear deformations in the neck region prior to fracture and also occasionally surface wave instabilities. The numerical investigation is based on an elastic-plastic material model for a solid that develops a vertex on the yield surface, using representations of the uniaxial stress-strain curves found experimentally. In contrast to the simplest flow theory of plasticity this material model predicts shear band instabilities at a realistic level of strain. A rather sharp vertex is used in the material model for the aluminum alloy, while a more blunt vertex is used to characterize copper. The theoretically predicted bifurcation into a necking mode, the cross-sectional shape of the neck, and finally the initiation and growth of shear bands from the highly strained internal surface in the neck region are in good agreement with the experimental observations.  相似文献   

5.
This paper is concerned with the constitutive equation for slightly compressible elastic material under finite deformations. We show that material slight compressibility can be effectively taken into account in the case of high hydrostatic pressure or highly confined material. In all other situations the application of the incompressible and nearly incompressible material theories gives practically the same results. Therefore it is of interest to consider the problem in which allowing for material slight compressibility leads to results essentially different from those obtained with help of the incompressible material model. In the present paper this difference has been demonstrated for the problem of high hydrostatic pressure causing an increase of the ‘bulk’ and ‘shear’ material moduli. The behavior of a long hollow cylinder of real material under finite deformations is analyzed. The cylinder is subjected to internal pressure and axial and circular displacements at the outer surface. This problem has been solved analytically using the small parameter method. The solution obtained predicts a decrease of the axial and circular displacements of the outer surface under fixed shear (axial and circular) forces when the internal pressure is applied.  相似文献   

6.
热超弹性圆筒的不稳定性   总被引:1,自引:1,他引:1  
任九生  程昌钧 《力学学报》2007,39(2):283-288
应用有限变形弹性理论分析了受内压和轴向拉伸作用的不可压热超弹性圆筒发生非均 匀变形的不稳定性问题. 受内压和轴向拉力作用的薄壁圆筒,当内压较小时,圆筒发生稳定 的均匀膨胀变形;当内压大于某一临界值时,圆筒产生复杂的非均匀变形,其一部分膨胀变 形很大,形如``灯泡'状,而另一部分仅仅是轻微膨胀,且此时的变形是不稳定的. 但对厚 壁圆筒而言,不论压力如何,总是发生稳定的均匀膨胀变形. 根据圆筒的变形曲线,给出了 圆筒可以发生不稳定变形的临界厚度. 同时,讨论了轴向拉伸和温度场对圆筒变形的影响.  相似文献   

7.
A practical theory for swaging bored holes within plates and cylinders is proposed which can take into account work-hardening in the presence of small plastic strains based upon equivalent stress-strain data. With the appropriate choice of yield function, this theory applies to the swaging of both thin and thick plates under respective plane stress and plane strain conditions. The theory can be adapted further to the autofrettage of open and closed-ended, thick-walled cylinders where similar plane deformations conditions apply. Here swaging refers to the practice in which an oversized plug or sphere is forced into the bore thereby expanding it permanently to leave a residual circumferential compression in the bore material upon removal of the expanding tool. A similar effect results from applying an initial over-pressure to a long thick-walled cylinder in an autofrettage process. Both treatments are employed to enhance the fatigue resistance when the service loading upon the disc or cylinder amounts to a cyclic, circumferential tension within its bore. Strain gauges bonded to the entry face of the plate are used to monitor the circumferential and radial strain distributions both during and after the swaging process. Experimental results presented for swaging of thin and thin annular discs in aluminium alloy show that the measured residual strain distributions concord with the theory for large discs with a 10/1 diameter ratio. The agreement is less satisfactory with the loss in axial symmetry for parallel-sided lugs with a width to hole diameter ratio of 4/1.  相似文献   

8.
The rate problem for rigid-plastic strain-hardening deformations in structures subjected to prescribed hydrostatic pressure surface load is stated rigorously with due account of finite deformations. From the basic theory, a complete solution for admissible stress and velocity fields occurring at bifurcation is obtained for the problem of a spherical shell under arbitrary combinations of internal and external pressures. An earlier proven, sufficient condition for the uniqueness of continuing quasi-static deformation of a spherical shell is shown to be one of necessity. In the case of solely external pressure, it is shown that buckling modes are excluded by attention to an isotropically strain-hardening material with a non-singular yield surface. For preponderant internal pressure, however, it is possible for the predicted bifurcation mode to occur under increasing pressure.  相似文献   

9.
应用双剪应力屈服准则求解某些塑性力学问题   总被引:27,自引:0,他引:27  
黄文彬  曾国平 《力学学报》1989,21(2):249-256
  相似文献   

10.
轴压作用下充液圆柱壳屈曲的实验研究   总被引:2,自引:0,他引:2  
本文从实验及理论两个方面对充满液体的圆柱壳在轴向压力作用下液体内压的变化进行了实际测试及理论定性分析.采用薄壳理论分析了屈曲前液体内压随轴向压力的变化规律,讨论了壳材料、几何参数及边界约束对内压的影响.通过实验实际测定了内压随轴向压力的变化规律.通过实验手段测定了充满液体的圆柱壳临界载荷、屈曲模态,讨论了充满液体的圆柱壳的承载能力等问题.  相似文献   

11.
In a companion paper1 submitted to ASME, the theoretical determination of stress-concentration factors in thick-walled cylinders was reported. The present paper reports the results of experiments conducted to check the predictions of the theory. The configuration is a thick-walled cylinder with crossholes or sideholes oriented perpendicular to the bore. Stress concentrations occur at the “tee” intersections of the holes with the bore. The loadings considered are internal pressure and external pressure. Both steel and plastic models were tested. Experiments were also conducted to determine the reduction of the stress-concentration factor by intersection radii at the crosshole intersection. Experimental results were found to agree well with theory. The best configuration was found to be one with crosshole (or sidehole) diameter equal to the bore diameter, and with an intersection radius at the tee intersection equal to the bore radius.  相似文献   

12.
An experimental investigation was performed to evaluate the effect of strain history on an initially isotropic material. A hot-rolled 2.5-in.-diam bar of SAE 1045 steel provided all the test specimens. Axial and circumferential compression data indicated that the steel was isotropic. Additional tension and torsion data indicated that the steel was an isotropic-hardening von Mises material; this was also confirmed by proportionate loading of thin-walled cylinders such that the ratio of axial to circumferential stresses was either 0, 1/2, 1, 2 or ∞. Two additional sets of cylinders were preloaded either in simple axial tension or as closed-ended cylinders to an effective plastic strain of 0.006 before they were proportionately loaded. The preloading had a pronounced effect on yield surfaces for reloading if the effective plastic strain on reloading was only slightly greater than that for the preloading. The effect of preloading on the yield surfaces was small when the effective plastic strain was three to four times that for the preloading. Hill's anisotropic theory was used to predict stress-strain relations for several of the reloaded cylinders. Good agreement was obtained between theory and experiment.  相似文献   

13.
厚壁圆筒在实际工程领域中应用广泛,若能精确计算出极限内压,对预防事故发生,降低风险有重要意义.工程中存在许多材料,其拉压强度和拉压模量均存在差异,这些差异对极限内压的大小有显著影响.以往研究表明,仅考虑拉压强度与拉压模量的一个方面,计算结果与实际情况存在一定的误差.本文基于双剪统一强度理论,综合考虑中间主应力效应及材料拉压强度和拉压模量的不同,推导了内压作用下厚壁圆筒的弹、塑性状态的应力分布及弹性极限内压、塑性极限内压与安定极限内压的统一解,通过与其他文献对比分析验证了本文计算结果的正确性,分析了半径比、统一强度理论参数、拉压强度比与拉压模量系数对弹性极限内压、塑性极限内压及安定极限内压的影响.结果表明:统一解均随半径比和统一强度理论参数的增大而增大,随拉压强度比的增大而减小,弹性极限内压随材料拉压模量系数的增大而减小,当壁厚增加到一定值后,安定极限内压随材料拉压模量系数的增大而减小;材料的拉压模量不同、拉压强度差异对厚壁圆筒的安定性影响显著,考虑中间主应力效应可使材料的潜能得到更充分发挥,极限内压随半径比的变化规律可为选择合理壁厚提供参考,该结论可为厚壁圆筒的工程应用提供理论依据.  相似文献   

14.
Two analytical solutions are used to predict load-strain relations for unloading of thick-walled cylinders. The solutions assume that the material is an isotropic-hardening material that obeys the von Mises yield condition. The loading function for the material for the unloading of the cylinders was obtained from tension-compression specimens that were unloaded and reverse loaded from several points along the tension stress-strain diagram. Good agreement is indicated between the unloading load-strain curves obtained from two thick-walled cylinders made of SAE 1045 steel and the curves predicted by the analytical solutions. The analytical solutions predict that the beneficial circumferential compressive residual stresses at the inside of the cylinders decrease by about 50 percent during the unloading.  相似文献   

15.
The purpose of this investigation was to determine whether a linear pressure-strain response was possible for gages subjected to hydrostatic pressures to 140 ksi. This was motivated by the desire to use this information to measure the elastic-plastic behavior of material at the inside surface of thick-walled cylinders subjected to high internal pressure. This paper shows the effects of fluid pressure to 140 ksi on four different types of foil strain gage. Linear pressure-strain curves were obtained for these gages mounted on flat surfaces of tungsten, steel and aluminum specimens. The linear strains of several materials due to pressure are compared with the compressibility constant (1–2ν)/E as calculated from experimentally determined values ofE and ν, whereE is defined as the modulus of elasticity and ν is Poisson's ratio. Experimental results show the percent deviation between the constants to be a function of the material, being greatest for tungsten and least for aluminum. The fact that a linear pressure-strain response was obtained makes it possible to correct the readings for strain gages mounted on flat surfaces of materials subjected to direct hydrostatic pressure. Temperature effects as a function of pressurization rate were investigated. Various gage failures encountered along with photomicrographs showing probable causes are presented.  相似文献   

16.
Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is used as the reference case, and then the weight function for a thick-walled cylinder containing a radial edge crack can be worked out. Secondly, the dynamic stresses in uncracked thick-walled cylinders are solved under internal impulsive pressure by using mode shape function method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary condi- tions, and the history and distribution of dynamic stresses in thick-walled cylinders are derived in terms of Fourier-Bessel series. Finally, the dynamic stress intensity factor equations for thick-walled cylinder containing a radial edge crack sub- jected to internal impulsive pressure are given by dynamic weight function method. The finite element method is utilized to verify the results of numerical examples, showing the validity and feasibility of the proposed method.  相似文献   

17.
Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plasticity theory. As a result, the current solutions can capture the size effect at the micron scale. Numerical results show that the smaller the inner radius of the cylinder or spherical shell, the more significant the scale effects. Results also show that the size effect is more evident with increasing strain or strain-rate sensitivity index. The classical plastic-based solutions of the same problems are shown to be a special case of the present solution.  相似文献   

18.
Autofrettage is a process for inducing elastic response in thick-walled cylinders subjected to internal pressures which otherwise cause plastic strains. To extend the use of autofrettage to higher pressure applications and to elminate many of the problems encountered in the use of the conventional process based on the use of direct internal hydrostatic pressure, a new technique has been developed which utilizes the mechanical advantage of a sliding wedge to produce the desired bore enlargement. Since the use of a sliding wedge or mandrel will induce shearing forces at the mandrel-cylinder interface, the resultant residual-stress distribution will differ from that theoretically predicted as characteristic of the direct hydrostatic process. It is the purpose of this work to determine the residual-stress distribution as a function of magnitude of overstrain and diameter ratio, and how it affects the reyielding characteristics of cylinders autofrettaged by this technique. Residual-stress distributions, determined by the Sachs boring-out technique for diameter ratios ranging from 1.5 to 2.3 and for several different magnitudes of overstrain, are shown. The shearing force associated with this technique induces substantial longitudinal residual stresses. The increase in the magnitude of this longitudinal residual stress with overstrain and the resultant decrease in the tangential residual stress are shown and discussed. Hydrostatic reyielding tests of autofrettaged cylinders are used to substantiate the decrease of tangential residual stress with increased overstrain. The substantially lower optimum overstrain as compared to the direct hydrostatic technique is shown and discussed. For optimum overstrain, the elastic strength of cylinders autofrettaged by swaging is comparable to that characteristic of the conventional process.  相似文献   

19.
The infinitesimal breathing motions of long cylindrical tubes and hollow spherical shells of arbitrary wall thickness subjected to a finite deformation field caused by uniform internal and/or external pressures are investigated. A neo-Hookean material with a material constant varying continuously along the radial direction is used. The shell is first subjected to finite static deformations and is then exposed to a secondary dynamic displacement field. Based on the theory of small deformations superposed on large deformations, closed form expressions are obtained for the frequency of small oscillations about the highly prestressed state. Frequency versus initial deformation parameter curves are given for several nohomogeneity functions and for various wall thicknesses.  相似文献   

20.
In this paper, a new method for analysis of the pseudoelastic response of shape memory alloy thick-walled cylinders subjected to internal pressure is proposed. Two cases of short and long cylinders are considered by assuming the plane stress and plane strain conditions. In each case, a three-dimensional phenomenological SMA constitutive model is simplified to obtain the corresponding two-dimensional constitutive relations. The cylinder is partitioned into a finite number of narrow annular regions, and appropriate assumptions are made in order to find a closed-form solution for the equilibrium equations in each annular region. The global solution is obtained by enforcing the stress continuity condition at the interface of the annular regions and imposing the boundary conditions. Several numerical examples are presented to demonstrate the efficiency of the proposed method, and the results are compared with three-dimensional finite element simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号