首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Systems constituted by impacting beams and rods of non-negligible mass are often encountered in many applications of engineering practice. The impact between two rigid bodies is an intrinsically indeterminate problem due to the arbitrariness of the velocities after the instantaneous impact and implicates an infinite value of the contact force. The arbitrariness of after-impact velocities is solved by releasing the impenetrability condition as an internal constraint of the bodies and by allowing for elastic deformations at contact during an impact of finite duration. In this paper, the latter goal is achieved by interposing a concentrate spring between a beam and a rod at their contact point, simulating the deformability of impacting bodies at the interaction zones. A reliable and convenient method for determining impact forces is also presented. An example of engineering interest is carried out: a flexible beam that impacts on an axially deformable strut. The solution of motion under a harmonic excitation of the beam built-in base is found in terms of transverse and axial displacements of the beam and rod, respectively, by superimposition of a finite number of modal contributions. Numerical investigations are performed in order to examine the influence of the rigidity of the contact spring and of the ratio between the first natural frequencies of the beam and the rod, respectively, on the system response, namely impact velocity, maximum displacement, spring stretching and contact force. Impact velocity diagrams, nonlinear resonance curves and phase portraits are presented to determine regions of periodic motion with impacts and the appearance of chaotic solutions, and parameter ranges where the functionality of the non-structural element is at risk.  相似文献   

2.
Small mass impacts on composite structures are common cases caused by hailstones and runway debris. Small mass impactors usually result in a wave controlled local response, which is independent of boundary conditions. This response occurs before the reflection of waves from the boundaries and cannot be modeled by large mass drop weight tests. An elasto-plastic contact law, which accounts for permanent indentation and damage effects, was used here to study small mass impact on laminated composite plates. By comparing with results from the Hertzian contact law, it was found that damage can change the dynamic response of the structure significantly with increasing impact velocity. Due to smaller contact force generated for the case of using elasto-plastic contact, the central displacement of the plate is also less than the one using Hertzian contact law. The linearized version of the contact law was then used to derive the closed-form approximations of the contact force, indentation and plate central displacement for the impact loading of composite laminates. The threshold velocity for delamination onset under small mass impact was predicted analytically based on the obtained peak contact forces by combining with an existing quasi-static delamination threshold load criterion. A good agreement was found between the predicted threshold values and published experimental results.  相似文献   

3.
A static, purely flexural mechanical analysis is presented for a Kirchhoff solid circular plate, deflected by a transverse central force, and clamped along two antipodal arcs, the remaining part of the boundary being free. By adopting an integral formulation, the contact reaction is assumed to be formed by four equal concentrated forces acting at the support extremities, accompanied by two distributed moments with radial and circumferential axis, respectively. This plate problem is rephrased in terms of a complex-valued Hilbert singular integral equation of the second kind, whose solution is obtained in analytical, integral form. A design chart is presented that reports the plate central deflection as a function of the angular width of the plate supports.  相似文献   

4.
研究柔性体撞击问题的子结构离散方法   总被引:7,自引:0,他引:7  
本文用子结构方法研究刚性小球和均质柔性杆的纵向撞击以及和均质柔性梁的横向撞击问题,导出了用模态坐标表示的动力学方程,通过对刚性小球和柔性杆的纵向撞击的仿真教育处发现,在总单元数相同的情况下,取8个子结构比较合理,在此基础上对刚性小球和均质柔性梁的横向撞击的特性进行研究,发现撞击力在变化过程中会产生上下波动,当梁的弹性模量增加时,撞击力增大,撞击时间缩短。  相似文献   

5.
In dynamic materials research, high precision impact displacement, velocity and force measurements are often required. In lower velocity testing apparatus, impact force histories are most often obtained through strain gage, piezoelectric force transducer or accelerometer signals. Velocity and displacement histories are then obtained by integration. Non-contact measurement systems have a number of advantages over these more common mechanical contact methods, and can generally be used at higher impact speeds. In this paper a relatively simple optical technique is presented for recording the impactor displacement history, from which the impact velocity and force histories can be readily obtained for a (quasi-) rigid impactor. The technique is based on the relative displacement of two moiré line gratings: one grating attached to the impacting body and the other serving as stationary reference grating. The technique has proven to be useful for impact speeds of a few m/s to well over 200 m/s. Results of transverse impact experiments on composite laminates are presented.  相似文献   

6.
研究了含黏弹性夹芯的功能梯度石墨烯增强复合材料(functionally graded graphene reinforced composite, FG-GRC)后屈曲梁在低速跌落冲击下的跳跃振荡行为.采用修正Halpin-Tsai细观模型预测FG-GRC的材料宏观属性.使用赫兹点接触模型确定冲击器和梁之间的接触力.提出了考虑轴向预应力的复合材料层本构关系和阻尼层的Kelvin型黏弹性本构.通过一种广义高阶剪切变形锯齿梁模型建立夹芯梁的非线性位移场. 基于Hamilton 能量变分原理, 推导了动力学控制方程组. 通过两步分析,首先获得弹性后屈曲平衡路径作为冲击问题的初始状态. 随后, 结合四阶龙格库塔法,拓展了两步摄动-伽辽金法计算接触力的时程曲线以及后屈曲梁的位移时程曲线.研究了后屈曲梁在单次和两次撞击下双稳态大幅振荡过程的动力学特征.讨论了轴向载荷、冲击速度、黏弹性阻尼特性、冲击器材料等因素对于碰撞接触力以及后屈曲梁动力响应的影响规律.结果表明, 接触力仅对冲击速度较为敏感,一定的结构碰撞参数设计可以在接触力变化不大的情况下,使得后屈曲梁由单势能阱运动转变为双阱大幅振荡.   相似文献   

7.
本文研究柔性梁点面斜碰撞问题。用Hertz接触模型处理法向撞击力,分别用Hertz切向接触模型和Coulomb摩擦力模型处理粘滞状态和滑动状态的摩擦力。从精确的应变与位移的关系出发,用绝对节点坐标法建立了柔性梁的动力学方程。为了准确地处理斜碰撞切向运动的复杂状态,提出滑动-粘滞切换的准则,在此基础上,设计了斜碰撞实验,数值对比了法向撞击力和法向速度的时间历程的仿真计算结果与实验结果,验证了Hertz理论在斜碰撞情况下的正确性。另一方面切向速度的实验与理论的结果对照表明滑动-粘滞切换准则的有效性。  相似文献   

8.
A static, purely flexural mechanical analysis is presented for a Kirchhoff solid circular plate, deflected by a transverse central force, and bilaterally supported along two antipodal periphery arcs, the remaining part of the boundary being free. Two kinds of contact reactions are considered, namely the case of distributed reaction force alone, and the situation in which the distributed force is added to a distributed couple of properly selected profile. For both cases this plate problem is formulated in terms of an integral equation of the Prandtl type, coupled with two constraint conditions. The existence of solutions in an appropriate scaled weighted Sobolev space is discussed, and the behaviour of the solution at the endpoints of the support is exhibited. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
A test facility for transverse shock loading of beams and plates at small impact velocities (up to 40 km/sec) is described. The impact contact force and unsteady strains are determined for a transverse impact on fiber-layered beams and plates from fiberglass and carbon fiber-reinforced plastic. Pulse shapes are determined for various impact velocities in the range of 5–40 m/sec. The shock loading and unsteady strain of composite beams and plates are calculated by the finite element method. The finite elements take into account transverse shears according to the Timoshenko theory and the viscoelastic material behavior according to the Voigt model.  相似文献   

10.
柱壳链能引起波形的弥散,具备操控波形的潜力。建立了柱壳链结构的等效连续介质模型和细观有限元模型,研究了质量块冲击作用下柱壳链中的弹性应力波传播过程及其几何弥散特性。基于考虑横向惯性修正的Rayleigh-Love波动方程,建立了柱壳链在质量块冲击下的控制方程,采用Laplace变换及其逆变换获得了位移场、速度场和应变场的解析解,所得结果与细观有限元模拟结果较好吻合。结果表明,在冲击过程中应变和速度峰值均逐渐减小,应变峰值、振荡幅度和波形前沿宽度与泊松比和惯性半径相关,泊松比和惯性半径越大,应变峰值越小,应变分布振荡越剧烈,波形前沿宽度越宽。  相似文献   

11.
自由梁中部在平头子弹横向正冲击下的穿透及变形   总被引:2,自引:0,他引:2  
研究了均匀矩形截面自由梁中部在小尺寸、平头、刚性、圆柱形弹体正撞击下的变形及穿透过程。当子弹冲击速度接近或高于临界穿透速度时 ,在梁上与子弹接触区的周围会形成一个剪切冲塞 ,子弹通过冲塞作用在梁上的剪应力会引起梁的整体弯曲变形。通过动力分析 ,确定了子弹穿透梁的临界穿透速度。对子弹穿透梁的局部剪切过程和梁的各个变形阶段进行了数值计算 ,估算出局部剪切能、梁弯曲变形能、子弹及梁的残余动能在子弹初动能中所占的比例。  相似文献   

12.
梁的轴向运动会诱发其产生横向振动并可能导致屈曲失稳,对结构的安全性和可靠性产生重大的影响。本文重点研究了横向载荷作用下轴向运动梁的屈曲失稳及横向非线性振动特性。基于Hamilton变分原理,建立了横向载荷作用下轴向运动梁的动力学方程,获得了梁的后屈曲构型。使用截断Galerkin法,将控制方程改写成Duffing方程的形式。用同伦分析方法确定载荷作用下轴向运动梁的非线性受迫振动的封闭形式的表达式。结果表明,后屈曲构型对轴向速度和初始轴向应力有明显的依赖性。通过同伦分析法得出非线性基频的显式表达式,获得了初始轴向力会影响非线性频率随初始振幅和轴向速度的线性关系。另外,轴向外激励的方向也会改变系统固有频率。  相似文献   

13.
To study the process of impact of a rigid body on the surface of an elastic body made of a composite material, we consider a nonstationary dynamic contact problem about the impact of a plane rigid die on an elastic orthotropic half-plane. The problem is reduced to solving an integral equation of the first kind for the Laplace transform of the contact stresses under the die base. An approximate solution of the integral equation is constructed with the use of a special approximation to the symbol of the kernel of the integral equation in the complex plane. The inverse Laplace transform of the solution results in determining the scalar contact stress field on the die base, the force exerted by the die on the elastic medium, and the vertical displacement field of the free surface of the orthotropic medium out side the die. The solutions thus obtained permit studying specific features of the process of die penetration into an orthotropic medium and the strain properties of the medium.  相似文献   

14.
Youhe Zhou 《力学快报》2013,3(2):021003
This letter presents a theoretical model of the normal (head-on) collisions between two soft spheres for predicting the experimental characteristic of the coefficient of restitution dependent on impact velocity. After the contact force law between the contacted spheres during a collision is phenomenologically formulated in terms of the compression or overlap displacement under consideration of an elastic—plastic loading and a plastic unloading subprocesses, the coefficient of restitution is gained by the dynamic equation of the contact process once an initial impact velocity is input. It is found that the theoretical predictions of the coefficient of restitution varying with the impact velocity are well in agreement with the existing experimental characteristics which are fitted by the explicit formula.  相似文献   

15.
In this study, a higher-order impact model is presented to simulate the response of a soft-core sandwich beam subjected to a foreign object impact. A free vibration problem of sandwich beams is first solved, and the results are validated by comparing with numerical finite element modeling results of ABAQUS and the solution by Frostig and Baruch [Frostig, Y., Baruch, M., 1994. Free vibration of sandwich beams with a transversely flexible core: a high order approach. Journal of Sound and Vibration 176(2), 195–208]. Then a foreign object impact process is incorporated in the higher-order model, and the contact force and deflection history as well as the propagation of transverse normal, shear, and axial stresses during the impact are analyzed and discussed. The validity of the model in the impact response predictions is demonstrated by comparing with finite element solutions of LS-DYNA. The calculated stresses caused by a foreign object impact are then used to assess failure locations, failure time, and failure modes in sandwich beams, which are shown to compare well with the available experimental results. The effects of impact mass, initial velocity, core stiffness, and core height on the impact stresses generated in the beams are discussed. The influences of impact mass and initial velocity on the contact force history are close to those by the linearized impact solution, but the proposed higher-order impact model captures the non-linear impact process and different generated stresses. Compared to the fully backed sandwich case, the core height shows a great influence over the impact process of a simply supported sandwich system, in which the global behavior of the sandwich is dominant; while the core stiffness shows minor effect over the impact process. The higher-order impact model of sandwich beams developed in the study provides accurate predictions of the generated stresses and impact process and can be used effectively in design analysis of anti-impact structures made of sandwich materials.  相似文献   

16.
Based on the nonlinear theory of shallow spherical thick shells and the damage mechanics, a set of nonlinear equations of motion for the laminated shallow spherical thick shells with damage subjected to a normal concentrated load on the top are established. According to Hertz law, the contact force acted upon the shells is determined due to the impact of a mass, and it is related to the mass and initial velocity of the striking object, the geometrical and physical character of the shell. By using the finite difference method and the time increment procedure, the nonlinear equations are resolved. In the numerical examples, the effects of the damage, the initial velocity, and mass of the striking object, the shells’ geometrical parameters on the dynamic responses and dynamic buckling of the laminated shallow spherical thick shells are discussed. Research of Y. Fu, Z. Gao and F. Zhu was supported by National Natural Science Foundation of China (No. 10572049).  相似文献   

17.
Consideration is given to the dynamic response of a Timoshenko beam under repeated pulse loading. Starting with the basic dynamical equations for a rotating radial cantilever Timoshenko beam clamped at the hub in a centrifugal force field, a system of equations are derived for coupled axial and lateral motions which includes the transverse shear and rotary inertia effects, as well. The hyperbolic wave equation governing the axial motion is coupled with the flexural wave equation governing the lateral motion of the beam through the velocity-dependent skew-symmetric Coriolis force terms. In the analytical formulation, Rayleigh-Ritz method with a set of sinusoidal displacement shape functions is used to determine stiffness, mass and gyroscopic matrices of the system. The tip of the rotating beam is subjected to a periodic pulse load due to local rubbing against the outer case introducing Coulomb friction in the system. Transient response of the beam with the tip deforming due to rub is discussed in terms of the frequency shift and non-linear dynamic response of the rotating beam. Numerical results are presented for this vibro-impact problem of hard rub with varying coefficients of friction and the contact-load time. The effects of beam tip rub forces transmitted through the system are considered to analyze the conditions for dynamic stability of a rotating blade with intermittent rub.  相似文献   

18.
厚度效应对梁冲击响应的影响   总被引:2,自引:0,他引:2  
用一种半解析法——间接模态叠加法,研究了质点与弹性力学梁的冲击问题,这种方法避免了具有未知奇异载荷项的平衡微分方程求解问题。由于可以用解析方法得到简支弹性力学梁的模态函数,并且能够以显式形式给出其频率方程,因此以质点与简支弹性力学梁的冲击问题为例,来考察厚度效应对瞬态响应的影响,并将所得结果与用Timoshenko梁理论所得结果进行了比较,说明了厚度效应在梁冲击问题中的重要影响。讨论了纵波和剪切波对撞击力等动力响应的影响。  相似文献   

19.
Solutions are obtained for the problem of an infinite elastic beam subjected to essentially constant velocity boundary conditions at one point of the beam. The effects of finite deflections, normal force, rotatory inertia and shear deformation are included. The equations of the problem are converted into non-dimensional form and a perturbation approach is used to obtain a consistent approximation. Numerical solutions are obtained for the bending moment, shear force and the normal force for different velocities of impact. It is shown that the solution to the problem depends on a combined geometrical and material parameter which does not vary significantly for compact sections and a loading parameter which determines the amplitude of the response. Finally the linear Timoshenko beam theory is shown to predict the bending moment and shear force extremely well even when the deflections are large enough to cause appreciable stretching of the centroidal axis.  相似文献   

20.
The traveling bending waves in a long beam of rectangular cross section were measured and calculated. The bending waves were induced by impacting with a steel sphere and measured with strain gages at several distances from the point of impact. The impact force was calculated as a function of time by integrating the dynamic equations of the sphere and the beam. The force spectrum was then found using a fast-Fourier-transform (FFT) calculation and multiplied by the moment-frequency response of the beam to determine the moment spectrum. The moment-time function was calculated by an inverse FFT. The traveling wave is dispersive; its spectrum was found from that at the point of impact by phase shifting each component by an angle proportional to the distance and to the square root of the frequency. Again the time curve was determined by an inverse FFT. The indentation stiffness of the beam was found to be very much less than that of the elastic half space because of transverse bending. After the impact force was recalculated with this correction, the calculated moment-time traces agreed very well with the measured ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号