首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
在普通的LS方法基础上,给出一种捕捉可压缩流体多重交汇界面的改进型LS方法,基本思想是在每一个时间循环步,保持LS函数始终为距离函数的基础上对LS函数进行修正,在多重交汇界面以外的区域,修正不改变界面位置,而只是减小多重交汇界面之间因摸平产生的空穴区域。其中,LS方程组和流体动力学方程组均运用非维数分裂的二阶精度有限体积差分格式计算,界面的重新初始化采用五阶WENO格式计算。  相似文献   

2.
自适应坐标变换方法是为解决多介质和大变形问题而提出的一类网格生成方法,该方法中的一种为近似保持网格夹角不变,保持物质界面为拉氏描述,并要求网格速度在最小二乘意义下尽量靠近流体运动速度。这里所讨论的坐标变换的自适应性,指的是新坐标系自动适应流体流场的一些重要特性(接近流体速度)以及保持网格的几何特性(保角)。为了处理多介质情况,网格方程应在子区域的所有边界上给出边界条件。  相似文献   

3.
多个未满l次壳层等效电子LS耦合原子态的多重谱项   总被引:4,自引:0,他引:4       下载免费PDF全文
给出用Matlab编程计算多个未满l次壳层的等效电子LS耦合原子态的矩阵计算方法,具体计算了4f75d电子组态LS耦合原子态的多重谱项的重数.  相似文献   

4.
多介质流动问题的求解一般是在结构网格上实现,而三角形网格对于复杂计算区域具有更好的适应性,本文结合rGFM方法,给出三角形网格上多介质流动问题界面处理方法.利用level-set方法跟踪界面,在界面处构造Riemann问题,得到界面处流体准确的流动状态.通过定义界面边界条件,将多介质流动问题转化为单介质流动问题,利用高精度RKDG方法求解.采用多个算例验证该方法的稳健性和有效性,结果表明该方法能准确捕捉界面和激波的位置,保持界面清晰.  相似文献   

5.
王春武  赵宁 《计算物理》2005,22(4):306-310
通过在界面处构造Riemann问题,根据流体的法向速度和压力在界面(接触间断)处连续的特性,利用Riemann问题的解不仅定义了ghost流体的值,而且对真实流体中邻近界面的点值进行了更新,使得在界面处的流体的状态满足接触间断的性质,给出了更加精确的界面边界条件,守恒误差分析表明该方法在界面计算过程中引入较小的误差.数值试验表明该方法能准确地捕捉界面和激波的位置.  相似文献   

6.
孙锁宏  陈耀松 《计算物理》1995,12(2):196-202
研究两相流体的界面进入细管时的流动过程.采用有限元方法,在远区用了相似单元方法,在随时变化过程中只对与界面相邻的单元作更动.由此,大大节省了计算工作量.对分界面与管壁的交汇过程设计了算法,算得界膜入口长度的变化过程与实测基本一致,但计算能提供整个流动的细节.  相似文献   

7.
用改进的耦合型Level Set方法计算一维双介质可压缩流动   总被引:2,自引:1,他引:1  
张镭  袁礼 《计算物理》2001,18(6):511-516
用带有虚拟流体(Ghost Fluid)修正的Level Set方法计算了一维可压缩双介质流动,把描述流动的Euler方程和描述流体界面运动的Level Set方程耦合起来,得到一个整体的守恒律系统,应用高分辨率差分格式求解;为了解决流体界面附近的数值跳动问题,在界面附近引入了虚拟流体方法的Isobaric修正,并给出了算例.  相似文献   

8.
可压缩多介质流体数值模拟中的Level-Set间断跟踪方法   总被引:1,自引:0,他引:1  
张学莹  赵宁  王春武 《计算物理》2006,23(5):518-524
针对可压缩多介质流体的数值模拟,发展了一种Level-Set间断追踪技术,用LS(Level-Set)函数追踪激波和捕捉界面,用Riemann问题解构造带状区域内的虚拟流体状态,对物理量的外推方法、间断附近虚拟流体的构造、间断推进速度的计算等问题进行了研究.最后对可压缩多介质流体一维和二维守恒律方程组进行数值模拟,数值计算采用通量重构的高精度WENO格式,计算结果令人满意.  相似文献   

9.
 从可压缩密实介质状态方程出发,推导出多介质流体在界面附近满足的动力学方程,与守恒律方程一起,采用高精度有限体积方法进行求解,物质界面用LevelSet函数捕捉。并给出了一维和二维数值算例。  相似文献   

10.
本文研究了两水平固壁间具有基本流动的两层不可压缩无粘无旋流体的浅水界面孤立波,利用多重尺度摄动方法求得了界面孤立波所满足的KdV方程和相应的单孤立波解,讨论了基本流动对界面孤立波的影响。  相似文献   

11.
 求解Riemann问题得到界面接触间断的流动状态,并以此构造带状区域的虚拟流体状态,对于多维问题设计了一种方便有效的算法。同时求解耦合的守恒形式欧拉方程组和非守恒界面捕捉方程,并用Level-Set函数捕捉界面,数值计算采用高分辨率MWENO格式。最后对可压缩多介质流动问题进行了数值模拟。  相似文献   

12.
基于近似Riemann解的有限体积ALE方法   总被引:1,自引:0,他引:1  
贾祖朋  蔚喜军 《计算物理》2007,24(5):543-549
研究二维平面坐标系和二维轴对称坐标系中四边形网格上可压缩流体力学的有限体积ALE(Arbitrary Lagrangian Eulerian)方法.数值方法采用节点中心有限体积法,数值通量采用适用于任意状态方程的HLLC(Harten-Lax-Van Leer-Collela)通量.空间二阶精度通过用WENO(weighted essentially non-oscillatory)方法对原始变量进行重构获得,时间离散采用两步显式Runge-Kutta格式.数值例子显示,方法具有良好的激波分辨能力和高精度的数值逼近能力.  相似文献   

13.
In this paper, we introduce a multi-material arbitrary Lagrangian and Eulerian method for the hydrodynamic radiative multi-group diffusion model in 2D cylindrical coordinates. The basic idea in the construction of the method is the following: In the Lagrangian step, a closure model of radiation-hydrodynamics is used to give the states of equations for materials in mixed cells. In the mesh rezoning step, we couple the rezoning principle with the Lagrangian interface tracking method and an Eulerian interface capturing scheme to compute interfaces sharply according to their deformation and to keep cells in good geometric quality. In the interface reconstruction step, a dual-material Moment-of-Fluid method is introduced to obtain the unique interface in mixed cells. In the remapping step, a conservative remapping algorithm of conserved quantities is presented. A number of numerical tests are carried out and the numerical results show that the new method can simulate instabilities in complex fluid field under large deformation,and are accurate and robust.  相似文献   

14.
 WENO有限差分格式有较高的分辨精度,适合复杂流场的计算,在国际上被广泛采用。本文利用WENO有限差分格式求解2维守恒型欧拉方程,实现了对无粘流体中Kelvin-Helmholtz不稳定性的数值模拟。速度剪切方向采用周期边界条件;扰动增长方向采用嵌边出流边界条件,一个不稳定波长分布64个网格。数值模拟给出的扰动幅值线性增长率与线性稳定性分析给出的结果很好符合,显示了该格式的有效性和精度。数值模拟给出了清晰的密度等值线,表明该方法还具有较好的界面变形捕捉能力。  相似文献   

15.
 用非耦合求解方法计算Level Set函数方程与流体力学方程组,应用重新初始化的Level Set函数确保距离函数性质,流体力学方程组采用二阶精度多介质流波传播差分格式计算,重新初始化方程采用五阶WENO格式计算。并给出了二维可压缩多介质流界面运动的计算结果。  相似文献   

16.
Ghost Fluid方法与双介质可压缩流动计算   总被引:1,自引:1,他引:0  
张镭  袁礼 《计算物理》2003,20(6):503-508
应用带有Isobaric修正的GhostFluid方法配合LevelSet方法计算可压缩双介质无粘流动.该方法可以消除计算流体界面时所产生的数值跳动和耗散,且编程上比界面跟踪法简单.应用WENO格式数值求解欧拉方程和LevelSet方程,对由刚性气体状态方程所支配的一二维双介质流动进行数值计算,得到了分辨率较高的计算结果.  相似文献   

17.
A novel finite-volume interface (contact) capturing method is presented for simulation of multi-component compressible flows with high density ratios and strong shocks. In addition, the materials on the two sides of interfaces can have significantly different equations of state. Material boundaries are identified through an interface function, which is solved in concert with the governing equations on the same mesh. For long simulations, the method relies on an interface compression technique that constrains the thickness of the diffused interface to a few grid cells throughout the simulation. This is done in the spirit of shock-capturing schemes, for which numerical dissipation effectively preserves a sharp but mesh-representable shock profile. For contact capturing, the formulation is modified so that interface representations remain sharp like captured shocks, countering their tendency to diffuse via the same numerical diffusion needed for shock-capturing. Special techniques for accurate and robust computation of interface normals and derivatives of the interface function are developed. The interface compression method is coupled to a shock-capturing compressible flow solver in a way that avoids the spurious oscillations that typically develop at material boundaries. Convergence to weak solutions of the governing equations is proved for the new contact capturing approach. Comparisons with exact Riemann problems for model one-dimensional multi-material flows show that the interface compression technique is accurate. The method employs Cartesian product stencils and, therefore, there is no inherent obstacles in multiple dimensions. Examples of two- and three-dimensional flows are also presented, including a demonstration with significantly disparate equations of state: a shock induced collapse of three-dimensional van der Waal’s bubbles (air) in a stiffened equation of state liquid (water) adjacent to a Mie-Grüneisen equation of state wall (copper).  相似文献   

18.
An interface capturing method with a continuous function is proposed within the framework of the volume-of-fluid (VOF) method. Being different from the traditional VOF methods that require a geometrical reconstruction and identify the interface by a discontinuous Heaviside function, the present method makes use of the hyperbolic tangent function (known as one of the sigmoid type functions) in the tangent of hyperbola interface capturing (THINC) method [F. Xiao, Y. Honma, K. Kono, A simple algebraic interface capturing scheme using hyperbolic tangent function, Int. J. Numer. Methods Fluids 48 (2005) 1023–1040] to retrieve the interface in an algebraic way from the volume-fraction data of multi-component materials. Instead of the 1D reconstruction in the original THINC method, a multi-dimensional hyperbolic tangent function is employed in the present new approach. The present scheme resolves moving interface with geometric faithfulness and compact thickness, and has at least the following advantages: (1) the geometric reconstruction is not required in constructing piecewise approximate functions; (2) besides a piecewise linear interface, curved (quadratic) surface can be easily constructed as well; and (3) the continuous multi-dimensional hyperbolic tangent function allows the direct calculations of derivatives and normal vectors. Numerical benchmark tests including transport of moving interface and incompressible interfacial flows are presented to validate the numerical accuracy for interface capturing and to show the capability for practical problems such as a stationary circular droplet, a drop oscillation, a shear-induced drop deformation and a rising bubble.  相似文献   

19.
We present a new three-dimensional hybrid level set (LS) and volume of fluid (VOF) method for free surface flow simulations on tetrahedral grids. At each time step, we evolve both the level set function and the volume fraction. The level set function is evolved by solving the level set advection equation using a second-order characteristic based finite volume method. The volume fraction advection is performed using a bounded compressive normalized variable diagram (NVD) based scheme. The interface is reconstructed based on both the level set and the volume fraction information. The novelty of the method lies in that we use an analytic method for finding the intercepts on tetrahedral grids, which makes interface reconstruction efficient and conserves volume of fluid exactly. Furthermore, the advection of volume fraction makes use of the NVD concept and switches between different high resolution differencing schemes to yield a bounded scalar field, and to preserve both smoothness and sharp definition of the interface. The method is coupled to a well validated finite volume based Navier–Stokes incompressible flow solver. The code validation shows that our method can be employed to resolve complex interface changes efficiently and accurately. In addition, the centroid and intercept data available as a by-product of the proposed interface reconstruction scheme can be used directly in near-interface sub-grid models in large eddy simulation.  相似文献   

20.
We describe a mixed Eulerian–Lagrangian approach for solving fluid–structure interaction (FSI) problems. The technique, which uses deforming composite grids (DCG), is applied to FSI problems that couple high speed compressible flow with elastic solids. The fluid and solid domains are discretized with composite overlapping grids. Curvilinear grids are aligned with each interface and these grids deform as the interface evolves. The majority of grid points in the fluid domain generally belong to background Cartesian grids which do not move during a simulation. The FSI-DCG approach allows large displacements of the interfaces while retaining high quality grids. Efficiency is obtained through the use of structured grids and Cartesian grids. The governing equations in the fluid and solid domains are evolved in a partitioned approach. We solve the compressible Euler equations in the fluid domains using a high-order Godunov finite-volume scheme. We solve the linear elastodynamic equations in the solid domains using a second-order upwind scheme. We develop interface approximations based on the solution of a fluid–solid Riemann problem that results in a stable scheme even for the difficult case of light solids coupled to heavy fluids. The FSI-DCG approach is verified for three problems with known solutions, an elastic-piston problem, the superseismic shock problem and a deforming diffuser. In addition, a self convergence study is performed for an elastic shock hitting a fluid filled cavity. The overall FSI-DCG scheme is shown to be second-order accurate in the max-norm for smooth solutions, and robust and stable for problems with discontinuous solutions for a wide range of constitutive parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号