首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
溴化亚铜激光泵浦的可调谐微微秒染料激光   总被引:1,自引:1,他引:0  
朱雷  钱列加 《光学学报》1990,10(10):69-875
本文首次报道了利用脉宽为25ns重复率为10kHz的溴化亚铜激光泵浦混有饱和吸收体DODCI的超短腔染料激光,产生出30ps光脉冲.在理论上对混入DODCI的超短腔染料激光脉冲压缩效应作了分析计算,计算结果与实验基本一致.在实验上又通过一个放大-色散系统实现对此染料激光脉冲的同步放大和调谐,并达到傅里叶变换极限.  相似文献   

2.
The performance of a novel dual dye laser system synchronously pumped by the frequency doubled output of a mode-locked CW-YAG laser is evaluated in relation to pulsewidth, pulse substructure, pulse spectral width and timing jitter. The behavior of the system is adequately described by a theoretical model which includes the time dependent gain and losses due to frequency bandwidth, cavity length mismatch and output coupler. The jitter is significantly reduced from that obtained with CW gas laser pumping as a result of the shorter pump pulse (50 ns instead of ≈100 ps). A routine operating condition uses 2-plate birefringen filters, 0.8 W pump power at 532 nm, to yield two 2.0 ps pulses having a cross correlation width of 3.8 ps, and 30 mW average power from each laser.  相似文献   

3.
A synchronously mode-locked, cavity-dumped picosecond dye laser is described. The structure and intensity of the picosecond pulses measured under different conditions are reported. It was found that the structure of the pulses from the synchronously pumped dye laser depends critically on the length of the Ar+ laser pulses. At the shortest Ar+ laser pulses of about 70 ps the dye pulses are as short as 1.1 ps. With Ar+ laser pulses of 200 ps the dye laser pulses contains a broad satellite pulse which contains a large fraction of the total intensity. When a cavity dumper is added to the system one gets dye laser pulses 15–20 ps long with a substructure, which indicates incomplete mode-locking. Well mode-locked 1.5–2.0 ps pulses were obtained in the red part of the dye laser action spectrum, i.e. 620–650 nm for R6G, 595–608 nm for R 110 and 657–662 nm for RB, respectively. Addition of mode-locking dyes also improved the pulse quality at some wavelengths.  相似文献   

4.
A single excimer laser (a modified commercial oscillation-amplifier combination) is used to pump a dye laser generating a single ps pulse at twice the excimer wavelength and to amplify the frequency-doubled pulse to high peak powers. With XeCl at 308 nm an output pulse energy of 10 mJ with <5 ps pulse width was achieved with <5% ASE energy.  相似文献   

5.
The development of a tunable picosecond dye laser, based on quenching cavity (QC) in an oscillator and spectro-temporal selection (STS) before amplification, is described. A theoretical model was constructed for the calculation of temporal and spectral evolutions of dye laser emission using a series of equations representing population inversions. The pulsewidth, linewidth, and pulse energy, obtained experimentally, were 90 ps, 0.2 nm, and 10 J, respectively. The tunable range, in which a single picosecond pulse can be obtained, was expanded from 4 to 20 nm for a single dye solution by applying QC to STS. Thus, the spectral region was covered from 320 to 360 nm using two laser dyes, i.e., BM-terphenyl and BBQ. Experimental data obtained using the instrument were in reasonably good agreement with values predicted from theory. PACS 42.55.Mv; 42.60.By  相似文献   

6.
A single picosecond ultraviolet pulse has been generated based on mode-locking of a dye laser pumped by a long pulse XeCl laser to serve as the input source for a high-power ps KrF laser system. A short-pulse uv dye laser (BBQ) pumped by an additional XeCl laser was used to selectively amplify a single pulse from a mode-locked pulse train with the pulse separation of 3.2 ns. The amplified single pulse was frequency-doubled to 248 nm with the pulse duration of 20 ps.  相似文献   

7.
A low-repetition-rate (10-Hz), picosecond (ps) optical parametric generator (OPG) seeded at the idler wavelength with a high-power diode laser is demonstrated. The output of the OPG at ∼566 nm is amplified in dye cells, resulting in signal enhancement by more than three orders of magnitude. The nearly transform-limited beam at ∼566 nm has a pulsewidth of ∼170 ps, with an overall output of ∼2.3 mJ/pulse. The laser is tuned either by tuning the nonlinear crystal or the seed-laser current. The applications of such a simple, compact, high-performance, tunable ps laser system for linear and nonlinear spectroscopies are outlined.  相似文献   

8.
We report on an injection-seeded 9.5-W 82-MHz-repetition-rate picosecond optical parametric generator (OPG) based on a 55 mm long crystal of periodically poled lithium niobate (PPLN) with a quasi-phase-matching (QPM) grating period of 29.75 μm. The OPG is excited by a continuously diode pumped mode-locked picosecond Nd:YVO4 oscillator-amplifier system. The laser system generates 7 ps pulses with a repetition rate of 82.3 MHz and an average power of 24 W. Without injection-seeding the total average output power of the OPG is 8.9 W, which corresponds to an internal conversion efficiency of 50%. The wavelengths of the signal and idler waves were tuned in the range 1.57–1.64 μm and 3.03–3.3 μm, respectively, by changing the crystal temperature from 150 °C to 250 °C. Injection seeding of the OPG at 1.58 μm with 4 mW of single frequency continuous-wave radiation of a distributed-feedback (DFB) diode laser increases the OPG output to 9.5 W (53% conversion efficiency). The injection seeding increases the pulse duration and reduces the spectral bandwidth. When pumped by 10 W of 1.06 μm laser radiation, the duration of the signal pulses increased from 3.6 ps to 5.5 ps while the spectral bandwidth is reduced from 4.5 nm to 0.85 nm. Seeding thus improved the time-bandwidth product from 1.98 to a value of 0.56, much closer to the Fourier limit. Received: 29 April 2002 / Published online: 8 August 2002  相似文献   

9.
The spectral and temporal processes in broadband pulsed-laser emissions of near-infrared dyes generated from low-Q and short laser cavities have been investigated with a rate equation model extended to a multiwavelength analysis. A very fast spectral evolution is proved, and this leads to the intrinsic presence of a single short pulse on the short-wavelength wing of the broadband IR dye laser spectrum. From the results, the direct generation of picosecond (≈90 ps)infrared dye-laser pulses adjustable in the 700–850 nm spectral range is successfully demonstrated with spectro-temporal selection, in a compact and simple device, using a nitrogen laser (337.1 nm, 8 ns) or a Q-switched ruby laser (694.3 nm, 25 ns) as a pumping source. Received: 6 October 1998 / Revised version: 14 April 1999 / Published online: 11 August 1999  相似文献   

10.
We report here an experimental study of the ionic keV X-ray line emission from magnesium plasma produced by laser pulses of three widely different pulse durations (FWHM) of 45 fs, 25 ps and 3 ns, at a constant laser fluence of ∼1.5 × 104 J cm − 2. It is observed that the X-ray yield of the resonance lines from the higher ionization states such as H- and He-like ions decreases on decreasing the laser pulse duration, even though the peak laser intensities of 3.5 × 1017 W cm − 2 for the 45 fs pulses and 6.2 × 1014 W cm − 2 for the 25 ps pulses are much higher than 5 × 1012 W cm − 2 for the 3 ns laser pulse. The results were explained in terms of the ionization equilibrium time for different ionization states in the heated plasma. The study can be useful to make optimum choice of the laser pulse duration to produce short pulse intense X-ray line emission from the plasma and to get the knowledge of the degree of ionization in the plasma.  相似文献   

11.
A miniaturized, high repetition rate, picosecond all solid state photo-induced distributed feedback (DFB) polymer-dye laser is described by applying a passively Q-switched and frequency-doubled Cr4+:Nd3+:YAG-microchip laser (pulse width Δτ=540 ps, repetition rate ν=3 kHz, pump energy Epump=0.15 μJ) as a pump source. A poly-methylmethacrylate film doped with rhodamine B dye serves as active medium. The DFB-laser pulses are temporally and spectrally characterized, and the stability of the thin polymer/dye film at high repetition rates is analyzed. The shortest DFB-laser pulses obtained have a duration of 11 ps. After the emission of 350000 pulses the intensity of the DFB-laser output has decreased by a factor of two and the pulse duration has increased by a factor of 1.2. For single DFB-laser pulses of 20-ps duration the spectral bandwidth is measured to be Δλ=0.03 nm, which is only 0.005 nm above the calculated Fourier limit assuming a Gaussian profile for the temporal shape of the pulses. Coarse wavelength tuning of the DFB laser between 590 and 619 nm is done by turning the prism. Additionally, a fine tuning of the DFB-polymer-laser wavelength is achieved by changing the temperature of the polymer/dye layer (=-0.05 nm/°C) in the range from 20 to 40 °C. Received: 1 March 2001 / Revised version: 23 May 2001 / Published online: 18 July 2001  相似文献   

12.
In this paper, pulse broadening caused by atmospheric dispersion is analyzed, which is the key factor in high-speed and long-distance free space laser communication systems according to our simulation. The measured datum of atmospheric parameters, including atmospheric pressure and atmospheric temperature of the desert in Xinjiang, China, is used in the analysis of pulses broadening. The pulse broadening caused by atmospheric dispersion is very significant when pulsewidth is on the order of 5 ps, and pulse broadening is negligible if the pulsewidth is larger than 20 ps. With the increment of optical wavelength, atmospheric dispersion-induced pulse broadening is mitigated. The received pulsewidth is dominated mainly by dispersion-induced pulse broadening at small duty ratio of original signal, and original pulsewidth at large duty ratio of original signal respectively. By selecting proper duty ratio of optical pulse, the received pulsewidth can be minimized and the system bit rate can be maximized.  相似文献   

13.
Using the frequency doubled output of the 3 ps pulses from a temporally compressed cw Q-switched and mode-locked Nd:YAG laser, a simple synchronously pumped dye laser was constructed to give frequency tunable operation with short pulses in the 5–10 ps range and peak powers of ~ 15 kW. A circularly scanning streak camera operating in stroboscopic mode was also used to examine pulse formation in the dye laser.  相似文献   

14.
New results in the experimental study of the spectro-temporal selection (STS) method to produce picosecond dye laser pulses are presented. Adjustability of the picosecond pulse wavelength, possibility of extension of the STS method to different dyes and to UV pump wavelength, stability of the output pulse duration and intensity, and the concentration effect on pulse duration, are reported for the first time. From these results, production of high power picosecond (50–100 ps) dye laser pulses spectrally adjustable between 400 and 700 nm is obtained with a standard nanosecond pump laser, in a compact and simple device.  相似文献   

15.
K P J Reddy 《Pramana》1985,25(6):713-718
The analysis of the characteristics of a synchronously mode-locked and internally frequency-doubled dye laser is presented. Dependence of dye laser pulse characteristics on the cavity length mismatch of the pump laser and dye laser is studied. Variation of the minimum pulsewidth with intracavity bandwidth and the harmonic conversion efficiency is presented in the form of graphs.  相似文献   

16.
Single light pulses, generated by a mode-locked Nd-glass laser, were shortened with saturable absorbers of low initial transmissionT 0. The pulse duration was reduced from 8 to 2.6 ps after a single pass through a dye cell ofT 0=10–7. Light pulses as short as 0.5 ps were observed after five transits through an absorberamplifier system. Detailed calculations of the stationary and the transient situation (with respect to the dye relaxation time) are presented to demonstrate optimum conditions for the pulse shortening.  相似文献   

17.
The relaxation time τR of the saturable dye used to mode-lock a Nd: YAG laser has been changed using different dyes or dye solvent mixtures and the laser bandwidth Δω changed by the insertion of an etalon. The pulse duration τp was approximately transform-limited for τR<2π/Δω but increased to about twice this value when 2π/Δω<τpR. No significant increase in pulse duration was observed for τR?2π/Δω but multiple pulses were generated within each round-trip-transit-time.  相似文献   

18.
A new type of distributed feedback dye laser is described in which the Bragg grating is formed by spatial hole-burning. With a simple excimer laser pumped arrangement, single high stability 6 ps pulses were generated. The pulses were nearly transformlimited and were 33 times shorter than the rise time of the pulse which created the Bragg grating.on leave from JATE University, Department of Experimental Physics, Dóm tér 9, H-6720 Szeged, Hungary  相似文献   

19.
A 0.5 cm–1 bandwidth injection-locked KrF laser pumps a rare-gas Brillouin cell to produce a reflected pulse with a leading edge risetime of 1 ns, tunable from 248.1 to 248.7 nm. Consistent with Lamb theory of laser amplifiers, subsequent excimer amplification of this pulse produces an intense 500 ps spike on the pulse leading edge. Stimulated Raman scattering then separates the spike from the parent pulse, yielding a tunable short pulse at the first Stokes (S 1) wavelength. Varying the Raman cell length results in a variable Raman threshold and an adjustable short pulse duration: 250 ps pulses at energies of 3–4 mJ at 268 nm with a 50 cm methane cell and 350 ps, 5 mJ pulses from a 100 cm cell are measured with a streak camera. First pass Raman conversion of the spike toS 1 followed by second pass backward Raman amplification, where the parent 248 nm pulse serves as the pump beam for the reflectedS 1 pulse, yields simultaneousS 1 pulses of 20–25 mJ in the 800 ps range andS 2 pulses of 550 ps at 5–6 mJ near 290 nm. This laser will avoid collision effects during laser excitation and enable quantitative, single pulse imaging of OH radicals in turbulent combustion because of its high pulse energy.  相似文献   

20.
Visible and near-infrared laser light pulses were coupled into two different types of optical fiber cavities. One cavity consisted of a short strand of fiber waveguide that contained two identical fiber Bragg gratings. Another cavity was made using a loop of optical fiber. In either cavity ∼40 ps laser pulses, which were generated using a custom-built gain-switched diode laser, circulated for a large number of round trips. The optical loss of either cavity was determined from the ring-down times. Cavity ring-down spectroscopy was performed on 200 pL volumes of liquid samples that were injected into the cavities using a 100 μm gap in the fiber loop. A detection limit of 20 ppm of methylene blue dye in aqueous solution, corresponding to a minimum absorptivity of εC<6 cm-1, was realized. PACS 42.62.Fi; 42.81.-i  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号