首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple method of thermal evaporation to fabricate micro and nanostructures of zinc oxide was presented. ZnO micro and nanostructures, prepared under different quantity of O2, were characterized by techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and analytical transmission electron Microscope. The SEM images indicated that the products prepared under the condition of sufficient O2 were needle-like microrods and the samples synthesized under the condition of deficient O2 were nanorods and nanowires with very high aspect ratio. The results of XRD and Raman shifts revealed that the ZnO micro and nanostructures synthesized under different quantity of O2 were both single crystalline with the hexagonal wurtzite structure. The HRTEM images indicated that the ZnO nanowire prepared under the condition of deficient O2 was single crystalline and grown along the direction of [0 0 1]. Photoluminescence measurement was carried out and it showed that the spectra of ZnO micro and nanostructures prepared under different quantity of O2 exhibited similar emission features. In addition, the growth mechanism of ZnO micro and nanostructures was preliminarily discussed.  相似文献   

2.
The effect of texture of iron foil substrate on the growth of hematite nanowires by annealing method has been investigated in detail. Three substrates of different textures were prepared from a [2 0 0] oriented iron foil by some simple processes. The hematite nanowires on these substrates were synthesized by annealing iron foil at 700 °C in moist oxygen. The growth pattern of nanowires on these substrates showed that the growth of hematite nanowires depends strongly on the iron substrate texture and [1 1 0] oriented iron grains are necessary for their growth. The samples were characterized by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD), Electron Back Scatter Diffraction (EBSD) and Raman Spectroscopy. We have also tried to explain the various observations on the mechanism of growth. Mainly, the presence of water vapor significantly enhanced the formation of hematite nanowires which resulted in a very dense and aligned growth of nanowires on the substrate areas of favorable texture. Finally, the study proved the substrate texture to be a powerful tool to control growth of nanowires and can be used efficiently for patterning and large scale synthesis of the nanowires.  相似文献   

3.
Dy-doped ZnO nanowires have been prepared using high-temperature and high-pressure pulsed-laser deposition. The morphology, structure, and composition of the as-prepared nanostructures are characterized by field emission scanning electron microscopy, X-ray diffraction, Raman scattering spectrometry, X-ray photoelectron spectrometry, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The alloying droplets are located at the top of the as-prepared Dy-doped ZnO nanowires, which means that the growth of the Dy-doped ZnO nanowires is a typical vapor-liquid-solid process. The luminescence properties of Dy-doped ZnO nanowires are characterized by cathodoluminescence spectra and photoluminescence spectra at low temperature (8 K). Two peaks at 481 and 583 nm, respectively, are identified to be from the doped Dy3+ ions in the CL spectra of Dy-doped ZnO nanowires.  相似文献   

4.
In order to well understand the growth mechanism of the diverse morphology of the ZnO nanostructures, in situ analysis of the formation of different ZnO nanostructures, such as nanowires, nanocombs, and nanosheets, has been conducted in an environmental scanning electron microscope (ESEM). It is found that both nanocombs and nanosheets grew in two-stage heating processes on parent nanowires. The difference is that the nanocombs were synthesized in extremely high pressure of zinc vapor via a self-catalyzed vapor-liquid-solid process, while the ZnO nanosheets were grown in relatively low pressure of zinc vapor. All the growth processes were revealed in real time imaging. It is demonstrated that the change in the growth environments can influence the thickness of the ZnO polycrystalline surface of the zinc powder, which alters the pressure of the zinc vapor and in turn determines the morphology of the final nanostructures.  相似文献   

5.
ZnO nanowires are grown on aluminum flake at low temperature by using a simple aqueous solution method. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscope (TEM) are applied to determine the as-grown ZnO nanowires morphology and crystal structures. The results show that the ZnO nanowires have wurtzite structure, and the diameter and length of the nanowire are 30 nm and more than 1.5 μm, respectively. Photoluminescence spectroscopy (PL) and Raman spectrum reveal the nanowires have good optical properties with low tensile stress. Meanwhile, photoelectrochemical cell (PEC) study verifies that ZnO nanowires as photoanodes are relatively stable in the photo-oxidation process, which could be a promising technique for practical applications.  相似文献   

6.
ZnO nanostructures have been synthesized by heating a mixture of ZnO/graphite powders using the thermal evaporation and vapor transport on Si(1 0 0) substrates without any catalyst and at atmospheric argon pressure. The influence of the source temperature on the morphology and luminescence properties of ZnO nanostructures has been investigated. ZnO nanowires, nanoflowres and nanotetrapods have been formed upon the Si(1 0 0) substrates at different source temperatures ranging from 1100 to 1200 °C. Room temperature photoluminescence (PL) spectra showed increase green emission intensity as the source temperature was decreased and ZnO nanowires had the strongest intensity of UV emission compared with other nanostructures. In addition, the growth mechanism of the ZnO nanostructures is discussed based on the reaction conditions.  相似文献   

7.
SnO2/ZnO hierarchical nanostructures were synthesized by a two-step carbon assisted thermal evaporation method. SnO2 nanowires were synthesized in the first step and were then used as substrates for the following growth of ZnO nanowires in the second step. Sn metal droplets were formed at the surfaces of the SnO2 nanowires during the second step and were acted as catalyst to facilitate the growth of ZnO nanowires via vapor-liquid-solid mechanism. Room temperature photoluminescence measurements showed that the SnO2/ZnO hierarchical nanostructures exhibited a strong green emission centered at about 520 nm and a weak emission centered at about 380 nm. The emissions from the SnO2 were drastically constrained due to screen effect caused by the ZnO layer.  相似文献   

8.
In this paper we will give an overview of the status of catalytic growth and of low-temperature chemical growth of ZnO nanostructures performed in our laboratory. Particularly results employing different substrates will be discussed. The second part deals with structural and optical properties of ZnO nanorods. The results from high resolution transmission electron microscope (HRTEM), scanning electron microscope (SEM), photoluminescence (PL), Cathodoluminescence (CL), and Electroluminescence (EL), on single nanowires will be shown. Our results on surface morphology, bulk and the position of the catalyst as well as the optical properties including UV emission, lasing and white emission will all be presented and discussed. In the third part experimental results from electroluminescence of ZnO nanorods on different substrates in the UV in addition to excellent white light emission obtained from samples grown at low temperature are to be given and discussed. Finally the sensing of molecules in water by ZnO nanorods will be discussed from a theoretical point of view. Also fundamental properties of polaritons and excitons in ZnO nanostructures are to be highlighted.  相似文献   

9.
The ZnO nanowires have been synthesized using vapor-liquid-solid (VLS) process on Au catalyst thin film deposited on different substrates including Si(1 0 0), epi-Si(1 0 0), quartz and alumina. The influence of surface roughness of different substrates and two different environments (Ar + H2 and N2) on formation of ZnO nanostructures was investigated. According to AFM observations, the degree of surface roughness of the different substrates is an important factor to form Au islands for growing ZnO nanostructures (nanowires and nanobelts) with different diameters and lengths. Si substrate (without epi-taxy layer) was found that is the best substrate among Si (with epi-taxy layer), alumina and quartz, for the growth of ZnO nanowires with the uniformly small diameter. Scanning electron microscopy (SEM) reveals that different nanostructures including nanobelts, nanowires and microplates have been synthesized depending on types of substrates and gas flow. Observation by transmission electron microscopy (TEM) reveals that the nanostructures are grown by VLS mechanism. The field emission properties of ZnO nanowires grown on the Si(1 0 0) substrate, in various vacuum gaps, were characterized in a UHV chamber at room temperature. Field emission (FE) characterization shows that the turn-on field and the field enhancement factor (β) decrease and increases, respectively, when the vacuum gap (d) increase from 100 to 300 μm. The turn-on emission field and the enhancement factor of ZnO nanowires are found 10 V/μm and 1183 at the vacuum gap of 300 μm.  相似文献   

10.
In this paper we report a simple method that enables the easy fabrication of ordered ZnO nanowire arrays using Anodic Aluminium Oxide (AAO) template. We have used a vacuum injection technique to fill solution into the pores of an AAO template. The AAO template has been fabricated by a two-step anodization process using 0.3 M oxalic acid (H2C2O4) solution under a constant voltage of 40 V. The AAO template formed through this process has been detached from Al substrate via an anodic voltage pulse using perchloric acid (HClO4) solution (70%). The nanowires of ZnO have been synthesized by injecting the saturated Zn(NO3)2 solution into the pores of the detached AAO template using a vacuum pump. The ZnO nanowires synthesized by this technique have been found dense & continuous with uniform diameter throughout the length of the wire. The structural characteristics of AAO template and ZnO nanowires have been studied by Field Emission Scanning Electron Microscope (FESEM), Atomic force microscope (AFM) and Transmission Electron Microscope (TEM).  相似文献   

11.
J.P. Kar  W. Lee 《Applied Surface Science》2008,254(20):6677-6682
Vertical aligned ZnO nanowires were grown by MOCVD technique on silicon substrate using ZnO and AlN thin films as seed layers. The shape of nanostructures was greatly influenced by the under laying surface. Vertical nanopencils were observed on ZnO/Si, whereas the nanowires on both sapphire and AlN/Si substrate have the similar aspect ratio. XRD patterns suggest that the nanostructures have good crystallinity. High-resolution transmission electron microscopy (HRTEM) confirmed the single crystalline growth of the ZnO nanowires along [0 0 1] direction. Room-temperature photoluminescence (PL) spectra of ZnO nanowires on AlN/Si clearly show a band-edge luminescence accompanied with a visible emission. More interestingly, no visible emission for the nanopencils on ZnO/Si substrates, were observed.  相似文献   

12.
β-Ga2O3 nanostructures including nanowires, nanoribbons and nanosheets were synthesized via thermal annealing of gold coated GaAs substrates in N2 ambient. GaAs substrates with different dopants were taken as the starting material to study the effect of doping on the growth and photoluminescence properties of β-Ga2O3 nanostructures. The nanostructures were investigated by Grazing Incident X-ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Energy Dispersive X-ray Spectroscopy, room temperature photoluminescence and optical absorbance. The selected area electron diffraction and High resolution-TEM observations suggest that both nanowires and nanobelts are single crystalline. Different growth directions were observed for nanowires and nanoribbons, indicating the different growth patterns of these nanostructures. The PL spectra of β-Ga2O3 nanostructures exhibit a strong UV-blue emission band centered at 410 nm, 415 nm and 450 nm for differently doped GaAs substrates respectively. A weak red luminescence peak at 710 nm was also observed in all the samples. The optical absorbance spectrum showed intense absorption features in the UV spectral region. The growth and luminescence mechanism in β-Ga2O3 nanostructures are also discussed.  相似文献   

13.
ZnO–SnO2 branch–stem nanostructures were realized on a basis of a two-step process. In step 1, SnO2-stem nanowires were synthesized. In step 2, ZnO-branch nanowires were successfully grown on the SnO2-stem nanowires through a simple evaporation technique. We have pre-deposited thin Au layers on the surface of SnO2 nanowire stems and subsequently evaporated Zn powders on the nanowires. The ZnO branches, which sprouted from the SnO2 stems, had diameters in a range of 30–35 nm. As-synthesized branches were of single crystalline hexagonal ZnO structures. Since the branch tips were comprised of Au-containing nanoparticles, the Au-catalyzed vapor–liquid–solid growth mechanism was more likely to control the growth process of the ZnO branches. To test a potential use of ZnO–SnO2 branch–stem nanostructures in chemical gas sensors, their sensing performances with respect to NO2 gas were investigated, showing the promising potential in chemical gas sensors.  相似文献   

14.
The 3D hedgehog-like ZnO nanostructures were synthesized on Si substrate through chemical vapor deposition process. The morphology and structure of the products were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, as well as transmission electron microscopy. The ZnO 3D hedgehog-like architectures were found to consist of a central nucleus and multiple side-growing nanowires with diameter of 100–250 nm and length up to 10 µm. The growth mechanism of the hedgehog-like ZnO nanostructures was studied. It revealed a three-step process during the entire growth. Finally, room temperature photoluminescence spectra of ZnO 3D nanostructures showed that the center excitation would render much stronger PL emission intensity. Furthermore, simulation results indicated that the enhanced emission came from light-trapping-induced excitation light field enhancement.  相似文献   

15.
ZnO nanostructures were grown on silicon, porous silicon, ZnO/Si and AlN/Si substrates by low-temperature aqueous synthesis method. The shape of nanostructures greatly depends on the underlying surface. Scattered ZnO nanorods were observed on silicon substrate, whereas aligned ZnO nanowires were obtained by introducing sputtered ZnO film as a seed layer. Furthermore, both the combination of nanorods and the bunch of nanowires were found on porous silicon substrates, whereas platelet-like morphology was observed on AlN/Si substrates. XRD patterns suggest the crystalline nature of aqueous-grown ZnO nanostructures and high-resolution transmission electron microscopy images confirm the single-crystalline growth of the ZnO nanorods along [0 0 1] direction. Room-temperature photoluminescence characterization clearly shows a band-edge luminescence along with a visible luminescence in the yellow spectral range.  相似文献   

16.
ZnO nanowires were synthesized in a short time of a few seconds through a simple thermal evaporation of Zn powder using solar energy under air atmosphere. The Zn powder was heated by focusing sunlight on the Zn powder employing a magnifying lens. This strategy heated Zn to its evaporation temperature resulting in its oxidation in air. This procedure formed ZnO nanowires of ∼10 nm diameter and ∼2 μm length. As only Zn powder without any catalysts was used as the source material, it is suggested that the growth of the nanowires occurs through a vapor-solid mechanism. The cathodoluminescence (CL) spectrum from such ZnO nanowires showed strong ultraviolet emission indicating their highly crystalline quality besides good optical properties.  相似文献   

17.
The growth direction and morphology of ZnO nanostructures synthesized by gas reactions between Zn and O vapor can be modulated by changing the relative gas content of Zn and O in the reaction atmosphere. Dominant nanostructures of ZnO nanotubes and ZnO/Zn nanocables with [112̄0] growth direction were obtained under the oxygen-shortage condition, while mainly ZnO nanowires with [0001] growth direction were obtained under the situation of O abundance. PACS 61.46.+w; 68.70.+w; 81.10.Bk  相似文献   

18.
Progress has been achieved in the synthesis, structural characterization and physical properties investigation of nanostructures. We have focused our attention on zinc oxide nanostructures. We report on the growth of ZnO nanostructures using vapour phase technique. We have synthesized, depending on the growth conditions, different nanostructures such as wires and combs of zinc oxide. ZnO nanowires electrical properties have been characterised in presence of different gases, the results highlight remarkable response to acetone and ethanol with detection limits lower than 1 ppm. PACS 73.63.Bd; 74.78.Na  相似文献   

19.
ZnO nanorods, nanobelts, nanowires, and tetrapod nanowires were synthesized via thermal evaporation of Zn powder at temperatures in the range 550-600 °C under flow of Ar or Ar/O2 as carrier gas. Uniform ZnO nanowires with diameter 15-25 nm and tetrapod nanowires with diameter 30-50 nm were obtained by strictly controlling the evaporation process. Our experimental results revealed that the concentration of O2 in the carrier gas was a key factor to control the morphology of ZnO nanostructures. The gas sensors fabricated from quasi-one-dimensional (Q1D) ZnO nanostructures exhibited a good performance. The sensor response to 500 ppm ethanol was up to about 5.3 at the operating temperature 300 °C. Both response and recovery times were less than 20 s. The gas-sensing mechanism of the ZnO nanostructures is also discussed and their potential application is indicated accordingly.  相似文献   

20.
采用化学气相沉积方法,在无催化剂的条件下,通过改变衬底位置在Si(100)衬底上制备出了高取向的磷掺杂ZnO纳米线和纳米钉.测试结果表明,当衬底位于反应源上方1.5 cm处时,所制备的样品为钉状结构,而当衬底位于反应源下方1 cm处时样品为线状结构.对不同形貌磷掺杂ZnO纳米结构的生长机理进行了研究.此外,在ZnO纳米结构的低温光致发光谱中观测到了一系列与磷掺杂相关的受主发光峰.还对磷掺杂ZnO纳米结构/n-Si异质结I-V曲线进行了测试,结果表明,该器件具有良好的整流特性,纳米线和纳米钉异质结器件的开启电压分别为4.8和3.2 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号