首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoresponsive gold nanoparticle networks were prepared by functionalizing them with azobenzene derivatives. A network can be formed when a linker molecule constituting the azobenzene moiety suitably derivatized on either side with gold surface sensitive groups such as thiols and amines is added to the nanoparticle solution. It is shown that the interparticle spacing in the networks could be controlled by the reversible trans-cis isomerization of the azobenzene moiety induced by UV and visible light, respectively. The photoinduced variation in the interparticle spacings is inferred by the changes in the optical spectra of the gold nanoparticles which display a red or blue shift in the surface plasmon resonance peak depending on a decrease or increase in the interparticle spacing, respectively. Transmission electron microscopy images are in consonance with the evidence from the optical spectra.  相似文献   

2.
The distance dependence of the localized surface plasmon (SP) extinction of discontinuous gold films is a crucial issue in the application of transmission surface plasmon resonance (T-SPR) spectroscopy to chemical and biological sensing. This derives from the usual sensing configuration, whereby an analyte binds to a selective receptor layer on the gold film at a certain distance from the metal surface. In the present work the distance sensitivity of T-SPR spectroscopy of 1.0-5.0 nm (nominal thickness) gold island films evaporated on silanized glass substrates is studied by using coordination-based self-assembled multilayers, offering thickness tuning in the range from approximately 1 to approximately 15 nm. The morphology, composition and optical properties of the Au/multilayer systems were studied at each step of multilayer construction. High-resolution scanning electron microscopy (HRSEM) showed no apparent change in the underlying Au islands, while atomic force microscopy (AFM) indicated flattening of the surface topography during multilayer construction. A regular growth mode of the organic layers was substantiated by X-ray photoelectron spectroscopy (XPS). Transmission UV-visible spectra showed an increase of the extinction and a red shift of the maximum of the SP band upon addition of organic layers, establishing the distance dependence of the Au SP absorbance. The distance sensitivity of T-SPR spectroscopy can be varied by using characteristic substrate parameters, that is, Au nominal thickness and annealing. In particular, effective sensitivity up to a distance of at least 15 nm is demonstrated with 5 nm annealed Au films. It is shown that intensity measurements, particularly in the plasmon intensity change (PIC) presentation, provide an alternative to the usually measured plasmon band position, offering good accuracy and the possibility of measuring at a single wavelength. The present distance sensitivity results provide the basis for further development of T-SPR transducers based on receptor-coated Au island films.  相似文献   

3.
The understanding of surface properties of core-shell type nanoparticles is important for exploiting the unique nanostructured catalytic properties. We report herein findings of a spectroscopic investigation of the thermal treatment of such nanoparticle assemblies. We have studied assemblies of gold nanocrystals of approximately 2 nm core sizes that are capped by alkanethiolate shells and are assembled by covalent or hydrogen-bonding linkages on a substrate as a model system. The structural evolution of the nanoparticle assemblies treated at different temperatures was probed by several spectroscopic techniques, including UV-visible, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The results show that the capping/linking shell molecules can be effectively removed to produce controllable surface and optical properties. The data further revealed that the thermally induced evolution of the surface plasmon resonance property of gold nanoparticles is dependent on the chemical nature of the linker molecule. The spectral evolution is discussed in terms of changes in particle size, interparticle distance, and dielectric medium properties, which has important implications for controlled preparation and thermal processing of core-shell nanostructured metal catalysts.  相似文献   

4.
Single two-dimensional planar silver arrays and one-dimensional linear gold chains of nanoparticles were investigated by dark-field surface plasmon spectroscopy and studied as a function of interparticle distance, particle size, and number of particles. In agreement with recent theoretical predictions, a red shift of the surface plasmon resonance occurring in two-dimensional arrays was found for lattice spacings below 200 nm. This red shift is associated with a significant broadening of the resonance and is attributed to the onset of near-field interactions. We found that the relative contributions of the long-range and short-range interactions in two-dimensional arrays of particles are fundamentally different to those occurring in individual linear chains.  相似文献   

5.
Using electrodynamics calculations, we have discovered one dimensional array structures built from spherical silver nanoparticles that produce remarkably narrow ( approximately meV or less) plasmon resonance spectra upon irradiation with light that is polarized perpendicular to the array axis. The narrow lines require a minimum particle radius of about 30 nm to achieve. Variations of the plasmon resonance wavelength, extinction efficiency and width with particle size, array structure, interparticle distance and polarization direction are examined, and conditions which lead to the smallest widths are demonstrated. A simple analytical expression valid for infinite lattices shows that the sharp resonance arises from cancellation between the single particle width and the imaginary part of the radiative dipolar interaction.  相似文献   

6.
用3种方法制备了银纳米粒子-聚乙烯醇复合体系,其中用加热还原法所得体系中Ag纳米粒子的尺寸较大(15nm),其表面等离子体共振吸收峰较宽,最大吸收波长位于420nm;用室温硼氢化钠还原法得到的复合体系的吸收峰蓝移至409nm,且峰形较窄,Ag纳米粒子的平均粒径为8.7nm;低温NaBH4还原法所得体系吸收峰进一步蓝移至397nm,此时Ag纳米粒子粒径最小(3.5nm).将室温还原法所得Ag-PVA复合体系旋涂成膜,所得薄膜光滑、透明、均匀性好,该法适用于制备多层薄膜,以调控薄膜的厚度和光谱性质.将Ag-PVA复合体系与钛酸四丁酯(Ti(OnBu)4)的乙醇溶液交替旋涂得到Ag-PVA/TiO2有机/无机复合薄膜.紫外-可见吸收光谱研究表明,随着Ag-PVA层数的增加,薄膜的表面等离子体共振吸收强度呈线性增加,但是TiO2层数的增加对吸收光谱没有明显影响.Ag-PVA/TiO2有机/无机复合薄膜将金属纳米粒子、有机高分子与无机半导体材料结合在一起,这种多层纳米结构在光电、催化功能薄膜等方面具有潜在的应用前景.  相似文献   

7.
Gold colloidal containing rare-earth ions Eu3+ were prepared at room temperature. Fluorescence spectra and resonance light scattering (RLS) spectra of Eu3+ ions and gold colloid containing Eu3+ were measured. For solution containing Eu3+, RLS features show two peaks at the edges of the visible light wavelength region. The short wavelength peak takes place at about 400 nm and the longer wavelength peak is the corresponding 1/2 fraction frequency RLS peak, which takes place at about 780 nm. When gold colloids were added to the solution containing Eu3+, both these two RLS peaks were enhanced. We believe that the energies, which are absorbed by the surface plasmon resonance in the gold nanoparticles, are efficiently transferred into the Eu3+ ions to cause the increased scattering.  相似文献   

8.
静电组装金纳米粒子制备局域表面等离子体共振传感膜   总被引:4,自引:1,他引:3  
采用聚电解质自组装技术制备局域表面等离子体共振(LSPR)传感膜的方法, 在玻璃基片上依次沉积聚电解质PDDA, PSS和PVTC, 并通过静电吸附构建胶体金纳米粒子自组装膜形成LSPR传感膜. 利用扫描电镜对LSPR传感膜表面形貌以及膜中金纳米粒子的粒径进行了表征, 同时通过紫外-可见消光光谱对其灵敏度和渗透深度等重要参数进行检测. 研究结果表明, 所制备的LSPR传感膜粒子分布均匀、单分散性好、稳定性高、重现性好; 消光峰位对样品溶液折射率的检测灵敏度为71 nm/RIU, 相应的峰强检测灵敏度为0.21 AU/RIU, 对表面吸附层的渗透深度约为16 nm.  相似文献   

9.
Red-shifting of the optical absorption spectra of aggregates of gold nanoparticles by dipole-dipole interactions is of considerable interest, both for theoretical reasons and because the phenomenon can be potentially exploited in various applications. A convenient and practical way to control the effect is to assemble the aggregated ensemble of n gold nanoparticles on the outer surface of larger dielectric spheres. Here, we show by experiment and calculation how the spectra of these structures can be systematically morphed from that of isolated gold particles, through the regime of broad absorption dominated by particle-particle interactions, and finally to the limiting case of a continuous nanoshell. The experimental data were produced using the process of deposition-precipitation, which provides a facile method to decorate polystyrene microspheres with gold nanoparticles. There is no need for prior functionalization of the microsphere surface in our method of deposition-precipitation. Calculations were carried out using a code based on the discrete dipole approximation (DDA). The spectra were dominated by three effects. These were a peak absorption at about 540 nm produced by the conventional plasmon resonance of spherical gold nanoparticles, a broad absorption in the range 600-900 nm caused by diverse dipole-dipole interactions between particles, which strengthened as the number of attached gold particles increased and finally, when n was large, an absorption peak due to the onset of nanoshell-like resonances. The experimental spectra could be successfully fitted by spectra calculated using combinations of these effects.  相似文献   

10.
Durable Au-patterning nanostructures with uniform spacing having an average nanoparticle size of 8 nm and an interparticle gap of 11 nm were fabricated using a microwave-plasma oven. Single molecules of immunoglobulin G (IgG) are individually occupied at the space constraints so that the extinction response of localized surface plasmon resonance (LSPR) can be observed when detecting human anti-IgG molecules, affording a detection limit of 66.7 pM.  相似文献   

11.
We study the dipolar coupling of gold nanoparticles arranged in regular two-dimensional arrays by extinction micro-spectroscopy. When the interparticle spacing approaches the plasmon resonance wavelength of the individual particles, an additional band of very narrow width emerges in the extinction spectrum. By systematically changing the particles dielectric environment, the particles shape, the grating constant and angle of incidence, we show how this band associated to a grating induced-resonance can be influenced in strength and spectral position. The spectral position can be qualitatively understood by considering the conditions for grazing grating orders whereas the strength can be related to the strength of dipolar scattering from the individual particles.  相似文献   

12.
Gold nanoparticles show thermal hysteresis with properties such as surface plasmon absorption, conductivity, and zeta potential. The direction of the incremental change in plasmon peak position and its extinction depend on the nature of surface conjugation. The thermal profile of a surface plasmon resonance spectrum for nanoparticles may serve as a signature for the associated small molecule or macromolecule on which it is seeded. The thermal responses of zeta potential and conductivity profile are found to be independent of the surface conjugation with the later being subjected to a phase transition phenomenon as revealed by a temperature criticality.  相似文献   

13.
The effects of interparticle distance on the UV-visible absorption spectrum of gold nanocrystals aggregates in aqueous solution have been investigated. The aggregates were produced by ion-templated chelation of omega-mercaptocarboxylic acid ligands covalently attached to the nanoparticles surface. Variation of the ligand chain length provides control over the interparticle separation in the aggregates. The UV-visible spectra consist typically of a single particle band and a secondary band at higher wavelengths associated with the formation of aggregates in solution. The position of the latter depends on interparticle separation up to distances of approximately 8 nm, in accordance with existing models. Potential applications therefore include distance sensitive labels or proximity probes. Conversely, variation of the ligand length allows the preparation of nanostuctured materials with tuned optical properties.  相似文献   

14.
Finite element method calculations were carried out to determine extinction spectra and the electromagnetic (EM) contributions to surface-enhanced Raman spectroscopy (SERS) for 90-nm Au nanoparticle dimers modeled after experimental nanotags. The calculations revealed that the EM properties depend significantly on the junction region, specifically the distance between the nanoparticles for spacings of less than 1 nm. For extinction spectra, spacings below 1 nm lead to maxima that are strongly red-shifted from the 600-nm plasmon maximum associated with an isolated nanoparticle. This result agrees qualitatively well with experimental transmission electron microscopy images and localized surface plasmon resonance spectra that are also presented. The calculations further revealed that spacings below 0.5 nm, and especially a slight fusing of the nanoparticles to give tiny crevices, leads to EM enhancements of 1010 or greater. Assuming a uniform coating of SERS molecules around both nanoparticles, we determined that regardless of the separation, the highest EM fields always dominate the SERS signal. In addition, we determined that for small separations less than 3% of the molecules always contribute to greater than 90% of the signal. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Silver nanocubes (AgNCs), 60 nm, have four extinction surface plasmon resonance (SPR) peaks. The finite difference time domain (FDTD) simulation method is used to assign the absorption and scattering peaks and also to calculate the plasmon field intensity for AgNCs. Because AgNCs have a highly symmetric cubic shape, there is a uniform distribution of the plasmon field around them, and they are thus sensitive to asymmetric dielectric perturbations. When the dielectric medium around a nanoparticle is changed anisotropically, either by placing the particle on a substrate or by coating it asymmetrically with a solvent, the plasmon field is distorted, and the plasmonic absorption and scattering spectra could shift differently. For the 60 nm AgNC, we found that the scattering resonance peak shifted more than the absorption peak. This changes the extinction bandwidth of these overlapping absorption and scattering bands, and consequently the figure of merit of the nanoparticle, as a localized SPR sensor, no longer has a constant value.  相似文献   

16.
Effects of changing the interparticle separation on the surface plasmon bands of ultrathin films of gold nanoparticles have been investigated by examining the interaction of alkanethiols of varying chain length on nanocrystalline gold films generated at the organic-aqueous interface. Adsorption of alkanethiols causes blue-shifts of the surface plasmon adsorption band, the magnitude of the shift being proportional to the chain length. The disordered nanocrystals thus created (lambdamax, 530 m) are in equilibrium with the ordered nanocrystals in the film (lambdamax, 700 m) as indicated by an isosbestic point around 600 nm. Long chain thiols disintegrate or disorder the gold films more effectively, as demonstrated by the increased population of the thiol-capped gold nanocrystals in solution. The rate of interaction of the thiols with the film decreases with the decreasing chain length. The effect of an alkanethiol on the spectrum of the gold film is specific, in that the effects with long and short chains are reversible. The changes in the plasmon band of gold due to interparticle separation can be satisfactorily modeled on the basis of the Maxwell-Garnett formalism. Spectroscopic studies, augmented by calorimetric measurements, suggest that the interaction of alkanethiols involves two steps, the first step being the exothermic gold film-thiol interaction and the second step includes the endothermic disordering process followed by further thiol capping of isolated gold particles.  相似文献   

17.
Blakey I 《Physical chemistry chemical physics : PCCP》2011,13(36):16444-5; discussion 16446-8
An article recently published in this journal claimed that a resonance enhanced light scattering (RELS) peak for 22 nm gold nanoparticles was observed at 653 nm, which was about 130 nm higher than the surface plasmon resonance maximum. They also claimed to observe RELS from dilute solutions of Rhodamine B, under conditions where it is expected to be in its monomeric form. This comment shows that the position of the RELS peak for the gold nanoparticles is an artefact of measurement and the RELS from Rhodamine B is simply fluorescence. These findings are likely to have a significant impact on the interpretation of the results in terms of interactions of dyes with gold nanoparticles as well as aggregation of gold nanoparticles, which has been reported elsewhere by the same authors.  相似文献   

18.
Dome-shaped gold nanoparticles (with an average diameter of 10.5 nm) are grown on H-terminated Si(100) substrates by simple techniques involving electro- and electroless deposition from a 0.05 mM AuCl3 and 0.1 M NaClO4 solution. XPS depth profiling data (involving Au 4f core-level and valence band spectra) reveal for the first time the formation of gold silicide at the interface between the Au nanoparticles and Si substrate. UV-visible diffuse reflectance spectra indicate that both samples have surface plasmon resonance maxima at 558 nm, characteristic of an uniform distribution of Au nanoscale particles of sufficiently small size. Glancing-incidence XRD patterns clearly show that the deposited Au nanoparticles belong to the fcc phase, with the relative intensity of the (220) plane for Au nanoparticles obtained by electroless deposition found to be notably larger than that by electrodeposition.  相似文献   

19.
This paper describes the results of an investigation of the interparticle interactions and reactivities in the assembly of gold nanoparticles mediated by cyanine dyes. The combination of the positively charged indolenine cyanine dyes and the negatively charged gold nanoparticles is shown to form a J-aggregate bridged assembly of nanoparticles, in addition to hydrophobic interparticle and electrostatic dye-particle interactions. Such interparticle interactions and reactivities are studied by probing the absorption of J-aggregates and fluorescence from the dyes and the surface plasmon resonance absorption from the nanoparticles. The J-aggregation of the dyes adsorbed on the nanoparticles is shown to play an important role in the assembly of nanoparticles. The spectral evolution of the J-band of the dyes and the surface plasmon resonance band of the nanoparticles was found to be sensitive to the nature of the charge and the structure of the dyes. The fluorescence quenching for the dyes was shown to be quantitatively related to the surface coverage of the dyes on the nanocrystal surfaces. These findings have provided important information for assessing a two-step process involving a rapid adsorption of the dyes on the nanoparticles and a subsequent assembly of the nanoparticles involving a combination of interparticle J-aggregation and hydrophobic interactions of the adsorbed dyes. The results are discussed in terms of the structural effects of the dyes, and the interparticle molecular interactions and reactivities, which provide important physical and chemical insights into the design of dye-nanoparticle structured functional nanomaterials.  相似文献   

20.
Hollow gold nanospheres (HGNs) ranging from 29.9 nm/8.5 nm (outer diameter/shell thickness) to 51.5 nm/4.5 nm and having aspect ratios spanning 3.5-11.7 were employed to investigate the ability to tailor charge oscillations of HGN aggregates by systematic variation of particle aspect ratio, interparticle gap, and nanosphere inner surface spatial separation. Altering these properties in aggregated HGNs led to control over the interparticle plasmon resonance. Thiol-mediated aggregation was accomplished using either ethanedithiol or cysteine, resulting in dimeric structures in which monomer subunits were spatially separated by <3 ? and 1.2 ± 0.7 nm, respectively. Particle dimensions and separation distances were confirmed by transmission electron microscopy. Experimental absorption spectra obtained for high-aspect ratio nanospheres dimerized using ethanedithiol exhibited an obvious blue shift of the surface plasmon resonance (SPR) relative to that observed for the native, monomeric HGN. This spectral difference likely results from a charge-transfer plasmon resonance at the dimer interface. The extent of the blue shift was dependent upon shell thickness. Dimers comprised of thin-shelled HGNs exhibited the largest shift; aggregates containing HGNs with thick shells (≥7 nm) did not display a significant SPR shift when the individual particles were in contact. By comparison, all cysteine-induced aggregates examined in this study displayed large interparticle gaps (>1 nm) and a red-shifted SPR, regardless of particle dimensions. This effect can be described fully by a surface mode coupling model. All experimental measurements were verified by finite difference time domain calculations. In addition, simulated electric field maps highlighted the importance of the inner HGN surface in the interparticle coupling mechanism. These findings, which describe structure-dependent SPR properties, may be significant for applications derived from the plasmonic nanostructure platform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号