首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the evolution of the spin Hall effect (SHE) in the regime where the material size responsible for the spin accumulation is either smaller or larger than the spin diffusion length. Lateral spin valve structures with Pt insertions were successfully used to measure the spin absorption efficiency as well as the spin accumulation in Pt induced through the spin Hall effect. Under a constant applied current the results show a decrease of the spin accumulation signal is more pronounced as the Pt thickness exceeds the spin diffusion length. This implies that the spin accumulation originates from bulk scattering inside the Pt wire and the spin diffusion length limits the SHE. We have also analyzed the temperature variation of the spin Hall conductivity to identify the dominant scattering mechanism.  相似文献   

2.
We show theoretically that stimulated spin-flip Raman scattering can be used to inject spin currents in doped semiconductors with spin-split bands. A pure spin current, where oppositely oriented spins move in opposite directions, can be injected in zinc blende crystals and structures. The calculated spin current should be detectable by pump-probe optical spectroscopy and anomalous Hall effect measurement.  相似文献   

3.
Hirsch [Phys. Rev. Lett. 83, 1834 (1999)] recently proposed a spin Hall effect based on the anomalous scattering mechanism in the absence of spin-flip scattering. Since the anomalous scattering causes both anomalous currents and a finite spin-diffusion length, we derive the spin Hall effect in the presence of spin diffusion from a semiclassical Boltzmann equation. When the formulation is applied to certain metals and semiconductors, the magnitude of the spin Hall voltage due to the spin accumulation is found to be much larger than that of magnetic multilayers. An experiment is proposed to measure this spin Hall effect.  相似文献   

4.
A remarkable analogy is established between the well-known spin Hall effect and the polarization dependence of Rayleigh scattering of light in microcavities. This dependence results from the strong spin effect in elastic scattering of exciton polaritons: if the initial polariton state has a zero spin and is characterized by some linear polarization, the scattered polaritons become strongly spin polarized. The polarization in the scattered state can be positive or negative dependent on the orientation of the linear polarization of the initial state and on the direction of scattering. Very surprisingly, spin polarizations of the polaritons scattered clockwise and anticlockwise have different signs. The optical spin Hall effect is possible due to strong longitudinal-transverse splitting and finite lifetime of exciton polaritons in microcavities.  相似文献   

5.
田岱  陈才干  王华  金晓峰 《中国物理 B》2016,25(10):107201-107201
The spin Hall effect has been investigated in 10-nm-thick epitaxial Au(001) single crystal films via H-pattern devices,whose minimum characteristic dimension is about 40 nm. By improving the film quality and optimizing the in-plane geometry parameters of the devices, we explicitly extract the spin Hall effect contribution from the ballistic and bypass contribution which were previously reported to be dominating the non-local voltage. Furthermore, we calculate a lower limit of the spin Hall angle of 0.08 at room temperature. Our results indicate that the giant spin Hall effect in Au thin films is dominated not by the interior defects scattering, but by the surface scattering. Besides, our results also provide an additional experimental method to determine the magnitude of spin Hall angle unambiguously.  相似文献   

6.
We report observation of intrinsic inverse spin Hall effect in undoped GaAs multiple quantum wells with a sample temperature of 10 K. A transient ballistic pure spin current is injected by a pair of laser pulses through quantum interference. By time resolving the dynamics of the pure spin current, the momentum relaxation time is deduced, which sets the lower limit of the scattering time between electrons and holes. The transverse charge current generated by the pure spin current via the inverse spin Hall effect is simultaneously resolved. We find that the charge current is generated well before the first electron-hole scattering event. Generation of the transverse current in the scattering-free ballistic transport regime provides unambiguous evidence for the intrinsic inverse spin Hall effect.  相似文献   

7.
We study the extrinsic spin Hall effect induced by Ir impurities in Cu by injecting a pure spin current into a CuIr wire from a lateral spin valve structure. While no spin Hall effect is observed without Ir impurity, the spin Hall resistivity of CuIr increases linearly with the impurity concentration. The spin Hall angle of CuIr, (2.1±0.6)% throughout the concentration range between 1% and 12%, is practically independent of temperature. These results represent a clear example of predominant skew scattering extrinsic contribution to the spin Hall effect in a nonmagnetic alloy.  相似文献   

8.
Graphene has an unusual low-energy band structure with four chiral bands and half-quantized and quantized Hall effects that have recently attracted theoretical and experimental attention. We study the Fermi energy and disorder dependence of its spin Hall conductivity sigma(xy)(SH). In the metallic regime we find that vertex corrections enhance the intrinsic spin Hall conductivity and that skew scattering can lead to sigma(xy)(SH) values that exceed the quantized ones expected when the chemical potential is inside the spin-orbit induced energy gap. We predict that large spin Hall conductivities will be observable in graphene even when the spin-orbit gap does not survive disorder.  相似文献   

9.
The spin Hall effect in a two-dimensional electron system on honeycomb lattice with both intrinsic and Rashba spin-orbit couplings is studied numerically. Integer quantized spin Hall conductance is obtained at the zero Rashba coupling limit when electron Fermi energy lies in the energy gap created by the intrinsic spin-orbit coupling, in agreement with recent theoretical prediction. While nonzero Rashba coupling destroys electron spin conservation, the spin Hall conductance is found to remain near the quantized value, being insensitive to disorder scattering, until the energy gap collapses with increasing the Rashba coupling. We further show that the charge transport through counterpropagating spin-polarized edge channels is well quantized, which is associated with a topological invariant of the system.  相似文献   

10.
We demonstrate that the spin Hall effect in a thin film with strong spin-orbit scattering can excite magnetic precession in an adjacent ferromagnetic film. The flow of alternating current through a Pt/NiFe bilayer generates an oscillating transverse spin current in the Pt, and the resultant transfer of spin angular momentum to the NiFe induces ferromagnetic resonance dynamics. The Oersted field from the current also generates a ferromagnetic resonance signal but with a different symmetry. The ratio of these two signals allows a quantitative determination of the spin current and the spin Hall angle.  相似文献   

11.
An extension of the Drude model is proposed that accounts for the spin and spin-orbit interaction of charge carriers. Spin currents appear due to the combined action of the external electric field, crystal field, and scattering of charge carriers. The expression for the spin Hall conductivity is derived for metals and semiconductors that is independent of the scattering mechanism. In cubic metals, the spin Hall conductivity sigma s and charge conductivity sigma c are related through sigma s=[2pi variant /(3mc2)]sigma2c with m being the bare electron mass. The theoretically computed value is in agreement with experiment.  相似文献   

12.
We investigate electrically induced spin currents generated by the spin Hall effect in GaAs structures that distinguish edge effects from spin transport. Using Kerr rotation microscopy to image the spin polarization, we demonstrate that the observed spin accumulation is due to a transverse bulk electron spin current, which can drive spin polarization nearly 40 microns into a region in which there is minimal electric field. Using a model that incorporates the effects of spin drift, we determine the transverse spin drift velocity from the magnetic field dependence of the spin polarization.  相似文献   

13.
《Physics letters. A》2014,378(26-27):1893-1896
We propose an entanglement detector composed of two quantum spin Hall insulators and a side gate deposited on one of the edge channels. For an ac gate voltage, the differential noise contributed from the entangled electron pairs exhibits the nontrivial step structures, from which the spin entanglement concurrence can be easily obtained. The possible spin dephasing effects in the quantum spin Hall insulators are also included.  相似文献   

14.
15.
何冬梅  彭斌  张万里  张文旭 《物理学报》2019,68(10):106101-106101
采用磁控溅射法在未掺杂和掺杂的SrTiO_3基片上沉积了NiFe薄膜,通过翻转测试法分离出掺杂样品中的自旋整流电压和逆自旋霍尔电压.研究结果表明:在未掺杂的SrTiO_3基片中,翻转前后测试的电压曲线基本一致,为NiFe薄膜自旋整流效应产生的电压.对于掺Nb浓度x为0.028, 0.05, 0.1, 0.15, 0.2的SrTiO_3基片,分离出的逆自旋霍尔电压随掺杂浓度增加而减小,在掺杂浓度为0.15和0.2的样品中没有探测到明显的逆自旋霍尔电压.本文的结果表明,在SrTiO_3中掺入强自旋轨道耦合的杂质,通过掺杂浓度可以实现对SrTiO_3中逆自旋霍尔效应的调控,这类可调控的自旋相关研究为自旋电子器件的研究和开发提供了更多的可能性,具有很大的潜在应用价值.  相似文献   

16.
The spin Hall effect can be induced by both extrinsic impurity scattering and intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. By tuning the Cd content, the well width, or the bias electric field across the quantum well, the intrinsic spin Hall effect can be switched on or off and tuned into resonance under experimentally accessible conditions.  相似文献   

17.
朱国宝 《中国物理 B》2012,(11):429-433
The spin Hall and spin Nernst effects in graphene are studied based on Green’s function formalism.We calculate intrinsic contributions to spin Hall and spin Nernst conductivities in the Kane-Mele model with various structures.When both intrinsic and Rashba spin-orbit interactions are present,their interplay leads to some characteristics of the dependence of spin Hall and spin Nernst conductivities on the Fermi level.When the Rashba spin-orbit interaction is smaller than intrinsic spin-orbit coupling,a weak kink in the conductance appears.The kink disappears and a divergence appears when the Rashba spin-orbit interaction enhances.When the Rashba spin-orbit interaction approaches and is stronger than intrinsic spin-orbit coupling,the divergence becomes more obvious.  相似文献   

18.
Reversible spin Hall effect comprising the direct and inverse spin Hall effects was electrically detected at room temperature. A platinum wire with a strong spin-orbit interaction is used not only as a spin current absorber but also as a spin-current source in the specially designed lateral structure. The obtained spin Hall conductivities are 2.4 x 10(4) (Omega m)(-1) at room temperature, 10(4) times larger than the previously reported values of semiconductor systems. Spin Hall conductivities obtained from both the direct and inverse spin Hall effects are experimentally confirmed to be the same, demonstrating the Onsager reciprocal relations between spin and charge currents.  相似文献   

19.
Optical spin-dynamic measurements in a high-mobility n-doped GaAs/AlGaAs quantum well show oscillatory evolution at 1.8 K consistent with a quasi-collision-free D'yakonov-Perel'-Kachorovskii regime. Above 5 K evolution becomes exponential as expected for collision-dominated spin dynamics. Momentum scattering times extracted from Hall mobility and Monte Carlo simulation of spin polarization agree at 1.8 K but diverge at higher temperatures, indicating the importance of electron-electron scattering and an intrinsic upper limit for the spin-relaxation rate.  相似文献   

20.
罗幸  周新星  罗海陆  文双春 《物理学报》2012,61(19):194202-194202
从光束角谱理论出发建立了描述光自旋霍尔效应的傍轴传输模型, 利用这一模型分析了光自旋霍尔效应中的交叉偏振特性. 通过分析交叉偏振效应强度和入射角变化的规律, 发现交叉偏振效应越强, 光自旋霍尔效应中的自旋分裂越大. 为便于实验观察, 将入射角选在光自旋霍尔效应较强的布儒斯特角附近, 观测到了强的交叉偏振效应. 增大交叉偏振分量的同时减小初始偏振分量, 可显著增强光自旋霍尔效应. 这一调控方法为研制基于光自旋霍尔效应的新型光子器件提供了理论基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号