首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用硫醇自组装单层膜结合悬浮纳米线技术制备了分子结器件, 对比研究了非电活性的1-十一烷基硫醇(C11)和电活性的二茂铁己硫醇(FHT)分子结的电荷传输特性. 结合两种传输机理, 提出一种新的模型拟合了分子结的电流-电压特性, 发现了氧化还原活性中心二茂铁(Ferrocene, Fc)可以使电荷传输机理由隧穿变成隧穿与跳跃共存. 结合变温实验验证了这一机理, 并对这种混合机理出现的原因进行了分析.  相似文献   

2.
The electrical properties of self-assembled monolayers (SAMs) on metal surfaces have been explored for a series of molecules to address the relation between the behavior of a molecule and its structure. We probed interfacial electron transfer processes, particularly those involving unoccupied states, of SAMs of thiolates or arylates on Au by using shear force-based scanning probe microscopy (SPM) combined with current-voltage (i-V) and current-distance (i-d) measurements. The i-V curves of hexadecanethiol in the low bias regime were symmetric around 0 V and the current increased exponentially with V at high bias voltage. Different than hexadecanethiol, reversible peak-shaped i-V characteristics were obtained for most of the nitro-based oligo(phenylene ethynylene) SAMs studied here, indicating that part of the conduction mechanism of these junctions involved resonance tunneling. These reversible peaked i-V curves, often described as a negative differential resistance (NDR) effect of the junction, can be used to define a threshold tip bias, V(TH), for resonant conduction. We also found that for all of the SAMs studied here, the current decreased with increasing distance, d, between tip and substrate. The attenuation factor beta of hexadecanethiol was high, ranging from 1.3 to 1.4 A(-1), and was nearly independent of the tip bias. The beta-values for nitro-based molecules were low and depended strongly on the tip bias, ranging from 0.15 A(-1) for tetranitro oligo(phenylene ethynylene) thiol, VII, to 0.50 A(-1) for dinitro oligo(phenylene) thiol, VI, at a -3.0 V tip bias. Both the V(TH) and beta values of these nitro-based SAMs were also strongly dependent on the structures of the molecules, e.g. the number of electroactive substituent groups on the central benzene, the molecular wire backbone, the anchoring linkage, and the headgroup. We also observed charge storage on nitro-based molecules. For a SAM of the dintro compound, V, approximately 25% of charge collected in the negative scan is stored in the molecules and can be collected at positive voltages. A possible mechanism involving lateral electron hopping is proposed to explain this phenomenon.  相似文献   

3.
Metal-molecule-metal junctions were fabricated by contacting Au-supported alkyl or benzyl thiol self-assembled monolayers (SAMs) with an Au-coated atomic force microscope (AFM) tip. The tip-SAM microcontact is approximately 15 nm(2), meaning the junction contains approximately 75 molecules. Current-voltage (I-V) characteristics of these junctions were probed as a function of SAM thickness and load applied to the microcontact. The measurements showed: (1) the I-V traces were linear over +/-0.3 V, (2) the junction resistance increased exponentially with alkyl chain length, (3) the junction resistance decreased with increasing load and showed two distinct power law scaling regimes, (4) resistances were a factor of 10 lower for junctions based on benzyl thiol SAMs compared to hexyl thiol SAMs having the same thickness, and (5) the junctions sustained fields up to 2 x 10(7) V/cm before breakdown. I-V characteristics determined for bilayer junctions involving alkane thiol-coated tips in contact with alkane thiol SAMs on Au also showed linear I-Vs over +/-0.3 V and the same exponential dependence on thickness. The I-V behavior and the exponential dependence of resistance on alkyl chain length are consistent with coherent, nonresonant electron tunneling across the SAM. The calculated conductance decay constant (beta) is 1.2 per methylene unit ( approximately 1.1 A(-)(1)) for both monolayer and bilayer junctions, in keeping with previous scanning tunneling microscope and electrochemical measurements of electron transfer through SAMs. These measurements show that conducting probe-AFM is a reliable method for fundamental studies of electron transfer through small numbers of molecules. The ability to vary the load on the microcontact is a unique characteristic of these junctions and opens opportunities for exploring electron transfer as a function of molecular deformation.  相似文献   

4.
A series of p- and n-GaAs-S-C(n)H(2n+1) || Hg junctions are prepared, and the electronic transport through them is measured. From current-voltage measurements, we find that, for n-GaAs, transport occurs by both thermionic emission and tunneling, with the former dominating at low forward bias and the latter dominating at higher forward bias. For p-GaAs, tunneling dominates at all bias voltages. By combining the analysis of the transport data with results from direct and inverse photoemission spectroscopy, we deduce an energy band diagram of the system, including the tunnel barrier and, with this barrier and within the Simmons tunneling model, extract an effective mass value of 1.5-1.6m(e) for the electronic carriers that cross the junctions. We find that transport is well-described by lowest unoccupied and highest occupied states at 1.3-1.4 eV above and 2.0-2.2 eV below the Fermi level. At the same time, the photoemission data indicate that there are continua of states from the conduction band minimum and the valence band maximum, the density of which varies with energy. On the basis of our results, it appears likely that, for both types of junctions, electrons are the main carrier type, although holes may contribute significantly to the transport in the p-GaAs system.  相似文献   

5.
This paper compares the current density (J) versus applied bias (V) of self-assembled monolayers (SAMs) of three different ethynylthiophenol-functionalized anthracene derivatives of approximately the same thickness with linear-conjugation (AC), cross-conjugation (AQ), and broken-conjugation (AH) using liquid eutectic Ga-In (EGaIn) supporting a native skin (~1 nm thick) of Ga(2)O(3) as a nondamaging, conformal top-contact. This skin imparts non-Newtonian rheological properties that distinguish EGaIn from other top-contacts; however, it may also have limited the maximum values of J observed for AC. The measured values of J for AH and AQ are not significantly different (J ≈ 10(-1)A/cm(2) at V = 0.4 V). For AC, however, J is 1 (using log averages) or 2 (using Gaussian fits) orders of magnitude higher than for AH and AQ. These values are in good qualitative agreement with gDFTB calculations on single AC, AQ, and AH molecules chemisorbed between Au contacts that predict currents, I, that are 2 orders of magnitude higher for AC than for AH at 0 < |V| < 0.4 V. The calculations predict a higher value of I for AQ than for AH; however, the magnitude is highly dependent on the position of the Fermi energy, which cannot be calculated precisely. In this sense, the theoretical predictions and experimental conclusions agree that linearly conjugated AC is significantly more conductive than either cross-conjugated AQ or broken conjugate AH and that AQ and AH cannot necessarily be easily differentiated from each other. These observations are ascribed to quantum interference effects. The agreement between the theoretical predictions on single molecules and the measurements on SAMs suggest that molecule-molecule interactions do not play a significant role in the transport properties of AC, AQ, and AH.  相似文献   

6.
The electrical conduction mechanisms of semicrystalline thermoplastic parylene C (-H(2)C-C(6)H(3)Cl-CH(2)-)(n) thin films were studied in large temperature and frequency regions. The alternative current (AC) electrical conduction in parylene C is governed by two processes which can be ascribed to a hopping transport mechanism: correlated barrier hopping (CBH) model at low [77-155 K] and high [473-533 K] temperature and the small polaron tunneling mechanism (SPTM) from 193 to 413 K within the framework of the universal law of dielectric response. The conduction mechanism is explained with the help of Elliot's theory, and the Elliot's parameters are determined. From frequency- and temperature-conductivity characteristics, the activation energy is found to be 1.27 eV for direct current (DC) conduction interpreted in terms of ionic conduction mechanism. The power law dependence of AC conductivity is interpreted in terms of electron hopping with a density N(E(F)) (~10(18) eV cm(-3)) over a 0.023-0.03 eV high barrier across a distance of 1.46-1.54 ?.  相似文献   

7.
The tunneling resistance and electronic structure of metal-molecule-metal junctions based on oligoacene (benzene, naphthalene, anthracene, and tetracene) thiol and dithiol molecules were measured and correlated using conducting probe atomic force microscopy (CP-AFM) in conjunction with ultraviolet photoelectron spectroscopy (UPS). Nanoscopic tunnel junctions (~10 nm(2)) were formed by contacting oligoacene self-assembled monolayers (SAMs) on flat Ag, Au, or Pt substrates with metalized AFM tips (Ag, Au, or Pt). The low bias (<0.2 V) junction resistance (R) increased exponentially with molecular length (s), i.e., R = R(0) exp(βs), where R(0) is the contact resistance and β is the tunneling attenuation factor. The R(0) values for oligoacene dithiols were 2 orders of magnitude less than those of oligoacene thiols. Likewise, the β value was 0.5 per ring (0.2 ?(-1)) for the dithiol series and 1.0 per ring (0.5 ?(-1)) for the monothiol series, demonstrating that β is not simply a characteristic of the molecular backbone but is strongly affected by the number of chemical (metal-S) contacts. R(0) decreased strongly as the contact work function (Φ) increased for both monothiol and dithiol junctions, whereas β was independent of Φ within error. This divergent behavior was explained in terms of the metal-S bond dipoles and the electronic structure of the junction; namely, β is independent of contact type because of weak Fermi level pinning (UPS revealed E(F) - E(HOMO) varied only weakly with Φ), but R(0) varies strongly with contact type because of the strong metal-S bond dipoles that are responsible for the Fermi level pinning. A previously published triple barrier model for molecular junctions was invoked to rationalize these results in which R(0) is determined by the contact barriers, which are proportional to the size of the interfacial bond dipoles, and β is determined by the bridge barrier, E(F) - E(HOMO). Current-voltage (I-V) characteristics obtained over a larger voltage range 0-1 V revealed a characteristic transition voltage V(trans) at which the current increased more sharply with voltage. V(trans) values were generally >0.5 V and were well correlated with the bridge barrier E(F) - E(HOMO). Overall, the combination of electronic structure determination by UPS with length- and work function-dependent transport measurements provides a remarkably comprehensive picture of tunneling transport in molecular junctions based on oligoacenes.  相似文献   

8.
This paper proposes a mechanism for the rectification of current by self-assembled monolayers (SAMs) of alkanethiolates with Fc head groups (SC(11)Fc) in SAM-based tunneling junctions with ultra-flat Ag bottom electrodes and liquid metal (Ga(2)O(3)/EGaIn) top electrodes. A systematic physical-organic study based on statistically large numbers of data (N = 300-1000) reached the conclusion that only one energetically accessible molecular orbital (the HOMO of the Fc) is necessary to obtain large rectification ratios R ≈ 1.0 × 10(2) (R = |J(-V)|/|J(V)| at ±1 V). Values of R are log-normally distributed, with a log-standard deviation of 3.0. The HOMO level has to be positioned spatially asymmetrically inside the junctions (in these experiments, in contact with the Ga(2)O(3)/EGaIn top electrode, and separated from the Ag electrode by the SC(11) moiety) and energetically below the Fermi levels of both electrodes to achieve rectification. The HOMO follows the potential of the Fermi level of the Ga(2)O(3)/EGaIn electrode; it overlaps energetically with both Fermi levels of the electrodes only in one direction of bias.  相似文献   

9.
We report a computational study of conformations and charge transport characteristics of biphenyldithiol (BPDT) monolayers in the (sqrt.3 x sqrt.3)R30 degrees packing ratio sandwiched between Au(111) electrodes. From force-field molecular-dynamics and annealing simulations of BPDT self-assembled monolayers (SAMs) with up to 100 molecules on a Au(111) substrate, we identify an energetically favorable herringbone-type SAM packing configuration and a less-stable parallel packing configuration. Both SAMs are described by the (2sqrt.3 x sqrt.3)R30 degrees unit cell including two molecules. With subsequent density-functional theory calculations of one unit cell of the (i) herringbone SAM with the molecular tilt angle theta approximately 15 degrees , (ii) herringbone SAM with theta approximately 30 degrees , and (iii) parallel SAM with theta approximately 30 degrees, we confirm that the herringbone packing configuration is more stable than the parallel one but find that the energy variation with respect to the molecule tilting within the herringbone packing is very small. Next, by capping these SAMs with the top Au(111) electrode, we prepare three molecular electronic device models and calculate their coherent charge transport properties within the matrix Green's function approach. Current-voltage (I-V) curves are then obtained via the Landauer-Buttiker formula. We find that at low-bias voltages (|V| < or = 0.2 V) the I-V characteristics of models (ii) and (iii) are similar and the current in model (i) is smaller than that in (ii) and (iii). On the other hand, at higher-bias voltages (|V| > or 0.5 V), the I-V characteristics of the three models show noticeable differences due to different phenyl band structures. We thus conclude that the BPDT SAM I-V characteristics in the low-bias voltage region are mainly determined by the -Au [corrected] interaction within the individual molecule-electrode contact, while both intramolecular conformation and intermolecular interaction can affect the BPDT SAM I-V characteristics in the high-bias voltage region.  相似文献   

10.
We have measured the current-voltage characteristics of conjugated oligo-tetrathiafulvalene-pyromelliticdiimide-imine (OTPI) wires ranging in length from 2.5 to 20.2 nm, contacted by Au electrodes. OTPI wires were built from Au substrates using alternating donor (tetrathiafulvalene, TTF) and acceptor (pyromelliticdiimide, PMDI) building blocks linked via aryl imine groups. Metal-molecule-metal junctions consisting of approximately 100 wires in parallel were prepared by contacting the wire films with an Au-coated atomic force microscope tip. The long OTPI wires exhibit a narrow band gap (<1.5 eV) and multiple redox states, which facilitate carrier injection from the Au contacts for hopping transport. We observe the theoretically predicted change in direct current (DC) transport from tunneling to hopping as a function of systematically controlled wire length, as well as strongly enhanced wire conductivity (0.02 S/cm) in the hopping regime. Hopping conduction is confirmed by length-, temperature-, and field-dependent transport measurements. These nanoscale transport measurements illuminate the role of molecular length and bond architecture on molecular conductivity and open opportunities for greater understanding of hopping transport in conjugated polymer films.  相似文献   

11.
The electrical properties of self-assembled monolayers (SAMs) on a gold surface have been explored to address the relation between the conductance of a molecule and its electronic structure. We probe interfacial electron transfer processes, particularly those involving electroactive groups, of SAMs of thiolates on Au by using shear force-based scanning probe microscopy (SPM) combined with current-voltage (i-V) and current-distance (i-d) measurements. Peak-shaped i-V curves were obtained for the nitro- and amino-based SAMs studied here. Peak-shaped cathodic i-V curves for nitro-based SAMs were observed at negative potentials in both forward and reverse scans and were used to define the threshold tip bias, V(TH), for electric conduction. For a SAM of 2',5'-dinitro-4,4'-bis(phenylethynyl)-1-benzenethiolate, VII, V(TH) was nearly independent of the tip material [Ir, Pt, Ir-Pt (20-80%), Pd, Ni, Au, Ag, In]. For all of the SAMs studied, the current decreased exponentially with increasing distance, d, between tip and substrate. The exponential attenuation factors (beta values) were lower for the nitro-based SAMs studied here, as compared with alkylthiol-based SAMs. Both V(TH) and beta of the nitro-based SAMs also depended strongly on the molecular headgroup on the end benzene ring addressed by the tip. Finally, we confirmed the "memory" effect observed for nitro-based SAMs. For mixed SAMs of VII and hexadecanethiol, I, the fraction of the charge collected in the negative tip bias region that can be read out at a positive tip bias on reverse scan (up to 38%) depended on the film composition and decreased with an increasing fraction of I, suggesting that lateral electron hopping among molecules of VII occurs in the vicinity of the tip.  相似文献   

12.
4-methyl-4'-(n-mercaptoalkyl)biphenyl (CH3-C6H4-C6H4-(CH2)n-SH, n=3-6, BPn) monolayers assembled on Au(111)-(1x1) in 1,3,5,-trimethylbenzene (TMB) at various temperatures are studied by scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). High resolution STM images reveal that BP3 and BP5 form a (sqrt 3x2sqrt 3) repeating motif superimposed on a temperature-dependent Moire pattern. BP4 and BP6 adlayers are characterized by a coexisting (2sqrt 3x5sqrt 3) majority phase and a temperature-dependent (3xpsqrt 3) minority phase. Assembly at 60 degrees C or 90 degrees C leads to p=5. Compression of the adlayer was found at higher temperatures. Combined with high-resolution structure experiments, the electronic characteristics of BP3 and BP4 self-assembled monolayers (SAMs) were studied by monitoring current-distance (iT-Deltaz) and current-voltage (iT-Ebias) characteristics in TMB employing a gold STM tip|BPn|Au(111)-(1x1) configuration. The semilogarithmic (iT-Deltaz) plots yielded three linear regions in the range 10 pA相似文献   

13.
Nanoscopic tunnel junctions were formed by contacting Au-, Pt-, or Ag-coated atomic force microscopy (AFM) tips to self-assembled monolayers (SAMs) of alkanethiol or alkanedithiol molecules on polycrystalline Au, Pt, or Ag substrates. Current-voltage traces exhibited sigmoidal behavior and an exponential attenuation with molecular length, characteristic of nonresonant tunneling. The length-dependent decay parameter, beta, was found to be approximately 1.1 per carbon atom (C(-1)) or 0.88 A(-)(1) and was independent of applied bias (over a voltage range of +/-1.5 V) and electrode work function. In contrast, the contact resistance, R(0), extrapolated from resistance versus molecular length plots showed a notable decrease with both applied bias and increasing electrode work function. The doubly bound alkanedithiol junctions were observed to have a contact resistance approximately 1 to 2 orders of magnitude lower than the singly bound alkanethiol junctions. However, both alkanethiol and dithiol junctions exhibited the same length dependence (beta value). The resistance versus length data were also used to calculate transmission values for each type of contact (e.g., Au-S-C, Au/CH(3), etc.) and the transmission per C-C bond (T(C)(-)()(C)).  相似文献   

14.
We present an overview of various aspects of the self-assembly of organic monolayers on silicon substrates for molecular electronics applications. Different chemical strategies employed for grafting the self-assembled monolayers (SAMs) of alkanes having different chain lengths on native oxide of Si or on bare Si have been reviewed. The utility of different characterization techniques in determination of the thickness, molecular ordering and orientation, surface coverage, growth kinetics and chemical composition of the SAMs has been discussed by choosing appropriate examples. The metal counterelectrodes are an integral part of SAMs for measuring their electrical properties as well as using them for molecular electronic devices. A brief discussion on the variety of options available for the deposition of metal counterelectrodes, that is, soft metal contacts, vapor deposition and soft lithography, has been presented. Various theoretical models, namely, tunneling (direct and Fowler-Nordheim), thermionic emission, Poole-Frenkel emission and hopping conduction, used for explaining the electronic transport in dielectric SAMs have been outlined and, some experimental data on alkane SAMs have been analyzed using these models. It has been found that short alkyl chains show excellent agreement with tunneling models; while more experimental data on long alkyl chains are required to understand their transport mechanism(s). Finally, the concepts and realization of various molecular electronic components, that is, diodes, resonant tunnel diodes, memories and transistors, based on appropriate architecture of SAMs comprising of alkyl chains (sigma- molecule) and conjugated molecules (pi-molecule) have been presented.  相似文献   

15.
Self-assembled monolayers (SAMs) of octanethiol and benzeneethanethiol were deposited on clean Pt(111) surfaces in ultrahigh vacuum (UHV). Highly resolved images of these SAMs produced by an in situ scanning tunneling microscope (STM) showed that both systems organize into a super-structure mosaic of domains of locally ordered, closely packed molecules. Analysis of the STM images indicated a (square root 3 x square root 3)R30 degrees unit cell for the octanethiol SAMs and a 4(square root 3 x square root 3)R30 degrees periodicity based on 2 x 2 basic molecular packing for the benzeneethanethiol SAMs under the coverage conditions investigated. SAMs on Pt(111) exhibited differences in molecular packing and a lower density of disordered regions than SAMs on Au(111). Electron transport measurements were performed using scanning tunneling spectroscopy. Benzeneethanethiol/Pt(111) junctions exhibited a higher conductance than octanethiol/Pt(111) junctions.  相似文献   

16.
This work examines charge transport (CT) through self‐assembled monolayers (SAMs) of oligoglycines having an N‐terminal cysteine group that anchors the molecule to a gold substrate, and demonstrate that CT is rapid (relative to SAMs of n‐alkanethiolates). Comparisons of rates of charge transport‐using junctions with the structure AuTS/SAM//Ga2O3/EGaIn (across these SAMs of oligoglycines, and across SAMs of a number of structurally and electronically related molecules) established that rates of charge tunneling along SAMs of oligoglycines are comparable to that along SAMs of oligophenyl groups (of comparable length). The mechanism of tunneling in oligoglycines is compatible with superexchange, and involves interactions among high‐energy occupied orbitals in multiple, consecutive amide bonds, which may by separated by one to three methylene groups. This mechanistic conclusion is supported by density functional theory (DFT).  相似文献   

17.
The adsorption pattern of gold nanoparticles (AuNPs) on functionalized self-assembled monolayers (SAMs) produced on a Au(111) surface was characterized. The Au(111) was modified with 11-amino-1-undecanethiol hydrochloride (AUT), 11-mercapto-1-undecanol (MUT), or 11-mercaptoundecanoic acid (MUA) at an elevated temperature and pressure. The AuNPs aggregated on the AUT-SAM surface, whereas they were well dispersed on the MUT-SAM surface and localized on the MUA-SAM surface. The results suggest that interactions between AuNPs differ according to the degree of peeling of citrate-layer-capped AuNPs. The degree of peeling, which is related to both the surface randomness of the SAMs and the functional characteristics of the terminal group of each SAM, was discussed on the basis of scanning tunneling microscopy observations, X-ray photoelectron spectroscopic analyses, and contact angle measurements. Our study shows that AuNP patterns can be controlled by changing the terminal group of the alkyl thiol SAM on a Au(111) surface.  相似文献   

18.
We report on the construction of an asymmetric tunneling junction between a Au STM tip and a Au(111)-(1 x 1) substrate electrode modified with the redox-active molecule N-hexyl-N'-(6-thiohexyl)-4,4'-bipyridinium bromide (HS6V6) in an electrochemical environment. The experiments focused on the reversible one-electron transfer reaction between the viologen dication V(2+) and the radical cation V(+*). Employing the concept of "electrolyte gating" we demonstrate transistor- and diodelike behavior based on in situ scanning tunneling spectroscopy at constant or variable bias voltages. We derived criteria and verified that the experimental data could be represented quantitatively by a model assuming a two-step electron transfer with partial vibrational relaxation. The analysis illustrates that the magnitude of the tunneling enhancement depends on the initial redox state of HS6V6 (V(2+) or V(+*)). Characteristic parameters, such as reorganization energy, potential drop, and overpotential across the tunneling gap were estimated and discussed. We present a clear discrimination between the redox-mediated enhanced and the off-resonance tunneling currents I(enh) respective I(T) and distinguish between electron transfer in symmetric and asymmetric Au | redox-molecule | Au configurations.  相似文献   

19.
This paper describes an experimentally simple system for measuring rates of electron transport across organic thin films having a range of molecular structures. The system uses a metal--insulator--metal junction based on self-assembled monolayers (SAMs); it is particularly easy to assemble. The junction consists of a SAM supported on a silver film (Ag-SAM(1)) in contact with a second SAM supported on the surface of a drop of mercury (Hg-SAM(2))--that is, a Ag-SAM(1)SAM(2)-Hg junction. SAM(1) and SAM(2) can be derived from the same or different thiols. The current that flowed across junctions with SAMs of aliphatic thiols or aromatic thiols on Ag and a SAM of hexadecane thiol on Hg depended both on the molecular structure and on the thickness of the SAM on Ag: the current density at a bias of 0.5 V ranged from 2 x 10(-10) A/cm(2) for HS(CH(2))(15)CH(3) on Ag to 1 x 10(-6) A/cm(2) for HS(CH(2))(7)CH(3) on Ag, and from 3 x 10(-6) A/cm(2) for HS(Ph)(3)H (Ph = 1,4-C(6)H(4)) on Ag to 7 x 10(-4) A/cm(2) for HSPhH on Ag. The current density increased roughly linearly with the area of contact between SAM(1) and SAM(2), and it was not different between Ag films that were 100 or 200 nm thick. The current--voltage curves were symmetrical around V = 0. The current density decreased with increasing distance between the electrodes according to the relation I = I(0)e(-beta d(Ag,Hg)), where d(Ag,Hg) is the distance between the electrodes, and beta is the structure-dependent attenuation factor for the molecules making up SAM(1). At an applied potential of 0.5 V, beta was 0.87 +/- 0.1 A(-1) for alkanethiols, 0.61 +/- 0.1 A(-1) for oligophenylene thiols, and 0.67 +/- 0.1 A(-1) for benzylic derivatives of oligophenylene thiols. The values of beta did not depend significantly on applied potential over the range of 0.1 to 1 V. These junctions provide a test bed with which to screen the intrinsic electrical properties of SAMs made up of molecules with different structures; information obtained using these junctions will be useful in correlating molecular structure and rates of electron transport.  相似文献   

20.
A systematic scanning tunneling microscopy (STM) study of alkanethiol self-assembled monolayers (SAMs) is presented as a function of the bias voltage, tunneling current, and tip-termini separation. Stable and etch-pit free SAMs of close-packed undecanethiol/Au(111) were obtained after annealing in ultrahigh vacuum. STM revealed two distinct c(4x2) structures with four nonequivalent molecules per unit cell. For both structures, reversible contrast variations occur upon systematically tuning the bias voltage, the current, and the tip-termini distance. These contrast transitions originate from probing the corresponding local density of states (LDOS) of each molecule and not from the reorientation of the alkanethiol chains. The STM contrast is particularly sensitive to the tip-termini separation in the range of 0.5-2.5 A, reflecting the distance-dependence of LDOS. At a fixed tip elevation, the STM contrast is less sensitive to changes in bias within 0.1-1.2 V. For the first time, we demonstrate that LDOS may override the physical height variations in the STM topographic contrast for alkanethiol SAM systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号