首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The distribution and dynamics of alkali cations inside Na-AOT reverse micelles have been investigated using Monte Carlo and molecular dynamics simulations. Water is modeled using the extended simple point charge (SPC/E) model. Simulations were carried out for alkali salts of Li+, Na+, K+, and Cs+ placed into the aqueous core of the reverse micelle, for situations corresponding to one and three molecules of added salt. In all cases, we observe that the larger K+ and Cs+ ions exchange with the Na+ counterion; however, the smaller Li+ ion prefers to remains solvated within the core of the reverse micelle. Our study reveals that the oil-water interface of the Na-AOT reverse micelle has the greatest selectivity toward Cs+ followed by K+ and Li+. A model based on enthalpic contributions illustrates that the solvation energies of the different cations in water control the ion-exchange process. The hydration number of the first water shell for Li+ situated in the aqueous core of the reverse micelle with radius R = 14.1 A was similar to that observed at infinite dilution in bulk water.  相似文献   

2.
3.
The stability of invertase was studied under various conditions, including at 75°C, in presence of stabilizers (sorbitol and glycerol) at 75°C, and in the presence of denaturants (urea and trichloroacetic acid) at 37°C in reverse micelles. Stability of the invertase in reverse micelles was found to be improved over that of the enzyme in bulk aqueous solution. Sorbitol could enhance enzyme stability as it does in the bulk aqueous system. The stabilizing effect of glycerol was reduced in reverse micelles. The denaturation pattern of urea remains unaltered. However, the denaturation effect of trichloroacetic acid has been reduced in reverse micelles.  相似文献   

4.
Solvated electrons have been generated in reverse micelles (RMs) through photodetachment of ferrocyanide (Fe(CN)(6)(4-)) in sodium bis(2-ethylhexyl) sulfosuccinate (AOT) RMs. We have measured both bleach recovery of the parent ferrocyanide CN stretch in the infrared and the decay of the solvated electron absorption at 800 nm. The bleach recovery has been fit to a diffusion model for the geminate recombination process. The fit parameters suggest a narrowing of the spatial distribution of ejected electrons due to confinement in the RMs when compared to bulk water. The diffusion coefficient of the solvated electron does not appear to be significantly affected by RM confinement. The decay of the solvated electron absorption exhibits an additional decay component that is not observed in bulk water and is smaller for larger RMs. No corresponding additional component is seen in the parent ferrocyanide IR bleach recovery, which supports our interpretation that the confinement-induced new decay process in RMs is due to electrons reacting with AOT headgroups.  相似文献   

5.
Gold nanoparticle synthesis in graft copolymer micelles   总被引:4,自引:0,他引:4  
 An amphiphilic poly(acrylic acid)/polystyrene graft copolymer (PAA-g-PS) has been used to form “nanoreactors” for the synthesis of gold clusters. Such copolymers tend to form stable micelles in non-polar organic solvents where the poly(acrylic acid) chains constitute the core, and the polystyrene chains, the shell. In the present study, the micellar structure of PAA-g-PS in toluene has been demonstrated by dynamic light scattering and transmission electron microscopy (TEM). The subsequent preparation of gold-graft copolymer composites involved the introduction of gold chloride (AuCl3), either in powder form or previously dissolved in ether, into the micellar cores of the PAA-g-PS in toluene. The gold salt was then reduced by ultraviolet (UV) irradiation of the emulsion, or of dried cast films. TEM and ultraviolet-visible (UV/Vis) spectroscopy were used to characterize the resulting composites. Gold particles of less than 5 nm in diameter were observed in all cases, but the size distribution and the spatial arrangement of the clusters in the cast films were modified when diethyl ether was used to introduce AuCl3 into the PAA-g-PS micellar cores. This was thought to be due to enhanced nucleation of the gold particles and partial disruption of the micellar cores in the presence of diethyl ether. Received: 21 January 1998 Accepted: 11 June 1998  相似文献   

6.
Using molecular dynamics techniques, we investigate the solvation of an excess proton within an aqueous reverse micelle in vacuo, with the neutral surfactant diethylene glycol monodecyl ether [CH3(CH2)11(OC2H4)2OH]. The simulation experiments were performed using a multistate empirical valence bond Hamiltonian model. Our results show that the stable solvation environments for the excess proton are located in the water-surfactant interface and that its first solvation shell is composed exclusively by water molecules. The relative prevalence of Eigen- versus Zundel-like solvation structures is investigated; compared to bulk results, Zundel-like structures in micelles become somewhat more stable. Characteristic times for the proton translocation jumps have been computed using population relaxation time correlation functions. The micellar rate for proton transfer is approximately 40x smaller than that found in bulk water at ambient conditions. Differences in the computed rates are examined in terms of the hydrogen-bond connectivity involving the first solvation shell of the excess charge with the rest of the micellar environment. Simulation results would indicate that proton transfers are correlated with rare episodes during which the HB connectivity between the first and second solvation shells suffers profound modifications.  相似文献   

7.
One approach to modeling the second coordination shell of metalloproteins is to pair amide-containing counterions with metal complexes to form hydrogen bonds in the solid state. In a more general approach, we have designed a surfactant counterion that can sustain hydrogen bonding interactions with metal complexes in solution. The surfactant is cationic and incorporates an amide as part of its headgroup to form hydrogen. The surfactant forms hydrogen bonding reverse micelles that accommodate anionic metal complexes in their polar core. In reverse micelles containing an iron(III) hexacyanide complex, spectroscopic evidence suggests that the anion is confined to the polar core region in solution. Single-crystal X-ray diffraction data on the surfactant ferricyanide system reveals a layered structure with interdigitated alkyl chains and an extensive network of hydrogen bonds that link amide groups to the cyanide ligands and to neighboring headgroups.  相似文献   

8.
The ultrafast vibrational dynamics of HDO:D(2)O ice at 180 K in anionic reverse micelles is studied by midinfrared femtosecond pump-probe spectroscopy. Solutions containing reverse micelles are cooled to low temperatures by a fast-freezing procedure. The heating dynamics of the micellar solutions is studied to characterize the micellar structure. Small reverse micelles with a water content up to approximately 150 water molecules contain an amorphous form of ice that shows remarkably different vibrational dynamics compared to bulk hexagonal ice. The micellar amorphous ice has a much longer vibrational lifetime than bulk hexagonal ice and micellar liquid water. The vibrational lifetime is observed to increase linearly from 0.7 to 4 ps with the resonance frequency ranging from 3100 to 3500 cm(-1). From the pump dependence of the vibrational relaxation the homogeneous linewidth of the amorphous ice is determined (55+/-5 cm(-1)).  相似文献   

9.
Palladium (Pd) nanoparticles were prepared in the reverse micellar system containing sucrose fatty acid esters with various esterification degrees. The TEM showed that Pd nanoparticles were of spherical and relatively uniform. The size of Pd nanoparticles strongly depended upon the composition of sucrose fatty acid esters. The resultant Pd colloid could be preserved for at least 2 months without precipitation.  相似文献   

10.
The aqueous phase of water/AOT reversed micelles having varying diameters was probed by a single free diffusing proton that was released form a hydrophilic photoacid molecule (2-naphthol-6,8-disulfonate). The fluorescence decay signals were reconstructed through the geminate recombination algorithm, accounting for the reversible nature of the proton-transfer reactions at the surface of the excited molecule and at the water/detergent interface. The radial diffusion of the proton inside the aqueous phase was calculated accounting for both the entropy of dilution and the total electrostatic energy of the ion pair, consisting of the pair-energy and self-energy of the ions. The analysis implied that micellar surface must be modeled with atomic resolution, assuming that the sulfono residue protrudes above the water/hydrocarbon interface by approximately 2 A. The analysis of the fluorescence decay curves implies that the molecule is located in a solvent with physical-chemical properties very similar to bulk water, except for the dielectric constant. For reversed micelles with r(max) > or = 16 A, the dielectric constant of the aqueous phase was approximately 70 and for smaller micelles, where approximately 60% of the water molecule is in contact with the van der Waals surface of the micelle, it is as low as 60. This reduction is a reflection of the increased fraction of water molecule that is in close interaction with the micelle surface.  相似文献   

11.
A spectroscopic investigation of the vibrational dynamics of water in a geometrically confined environment is presented. Reverse micelles of the ternary microemulsion H2O/AOT/n-octane (AOT = bis-2-ethylhexyl sulfosuccinate or aerosol-OT) with diameters ranging from 1 to 10 nm are used as a model system for nanoscopic water droplets surrounded by a soft-matter boundary. Femtosecond nonlinear infrared spectroscopy in the OH-stretching region of H2O fully confirms the core/shell model, in which the entrapped water molecules partition onto two molecular subensembles: a bulk-like water core and a hydration layer near the ionic surfactant headgroups. These two distinct water species display different relaxation kinetics, as they do not exchange vibrational energy. The observed spectrotemporal ultrafast response exhibits a local character, indicating that the spatial confinement influences approximately one molecular layer located near the water-amphiphile boundary. The core of the encapsulated water droplet is similar in its spectroscopic properties to the bulk phase of liquid water, i.e., it does not display any true confinement effects such as droplet-size-dependent vibrational lifetimes or rotational correlation times. Unlike in bulk water, no intermolecular transfer of OH-stretching quanta occurs among the interfacial water molecules or from the hydration shell to the bulk-like core, indicating that the hydrogen bond network near the H2O/AOT interface is strongly disrupted.  相似文献   

12.
Proteins encapsulated within the aqueous core of reverse micelles are found to partially align in a magnetic field. The degree of alignment is sufficient to result in sizable residual 15N-1H dipolar couplings that can be easily measured. It is found that the magnetic susceptibility of the reverse micelle particle is not dominated by the encapsulated protein. The residual dipolar couplings are found to be structurally meaningful.  相似文献   

13.
14.
Static and ultrafast infrared spectroscopy have been used to measure absorption spectra and vibrational energy relaxation (VER) times for the antisymmetric stretching vibrational band of azide, N(3)(-), in formamide-containing reverse micelles (RMs). RMs were formed in n-heptane using the surfactant AOT, sodium bis(2-ethylhexyl) sulfosuccinate. The VER times were found to be significantly longer than in bulk formamide. The VER times became longer as the molar ratio of formamide to AOT, omega(F), was decreased. Decreasing omega(F) also resulted in substantial blue shifts of the azide static absorption band compared to the frequency in bulk formamide. The omega(F) dependent studies are consistent with expected size trends, where a larger RM results in more bulklike polar solvent and faster VER rates. These results are in contrast to aqueous AOT RMs where VER times were indistinguishable from those in the bulk and the static spectral shifts were much smaller. The differences between the static and dynamic behavior in aqueous and formamide RMs are related to differences in structural changes upon confinement in RMs.  相似文献   

15.
16.
Structure of AOT reverse micelles under shear   总被引:3,自引:0,他引:3  
Reverse micelles in the AOT/water/isooctane system, at various water contents (W(0)), were studied using rheometry and small angle X-ray scattering (SAXS) experiments under static conditions and under shear. The SAXS analysis confirmed the spherical shape of the micelles at low water content and revealed a transition into elongated micelles at higher water content. A population of spherical micelles was found to coexist with the cylindrical ones, even above the percolation threshold. The shape transformation was correlated with a viscosity leap observed in the rheometry measurements. Reverse micelles at low water content under shear act as a Newtonian fluid, without any detectable shape changes. In contrast, reverse micelles at high water content behave as a shear thinning fluid. SAXS measurements at high water content under shear force have shown that the shear forces induced alignment of the cylindrical micelles in the flow direction, without any other changes in the micelle dimensions. The anisotropy parameter, a measure of the degree of the spatial order, was found to increase with increasing water content and shear rate.  相似文献   

17.
The design and synthesis of a new cross-linkable amphiphile is reported. Solutions of the amphiphile in a toluene/water mixture form reverse micelles as indicated by dynamic light scattering and NMR spectroscopy. As indicated by dynamic light scattering, TEM, and NMR spectroscopy data, these reverse micelles can be cross-linked without drastically changing the radius of the reverse micelles. Mixed reverse micelles are also characterized and cross-linked. The cross-linked reverse micelles are demonstrated to facilitate phase transfer and can be used to site isolate a catalyst.  相似文献   

18.
We report structural and dynamical properties of water confined within reverse micelles (RMs) ranging in size from R = 10 A to R = 23 A as determined from molecular dynamics simulations. The low-frequency infrared spectra have been calculated using linear response theory and depend linearly on the fraction of bulklike water within the RMs. Furthermore, these spectra show nearly isosbestic behavior in the region near 660 cm(-1). Both of these characteristics are present in previously measured experimental spectra. The single dipole spectra for interfacial trapped, bound, and bulklike water within the RMs have also been calculated and show region-dependent frequency shifts. Specifically, the bound and trapped water spectra have a peak at lower frequencies than that for the inner core water. We therefore assign the low-frequency band in the IR spectra to bound and trapped interfacial water. Finally, region-dependent hydrogen bonding profiles and spatial distribution functions are also presented.  相似文献   

19.
We report an approach for the fabrication of periodic molecular nanostructures on surfaces. The approach involves biomimetic self-organization of synthetic wedge-shaped amphiphilic molecules into multilayer arrays of cylindrical reverse micelles. The films were characterized by atomic force microscopy and X-ray reflectivity. These nanostructured films self-assemble in solution but remain stable upon removal and exposure to ambient conditions, making them potentially suitable for a variety of dry pattern transfer methods. We illustrate the generality of this approach by using two distinct molecular systems that vary in size by a factor of 2.  相似文献   

20.
We describe the synthesis in situ of copper nanoparticles in reverse micelles. It is possible to form metallic particles either surrounded or not surrounded by an oxide layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号