首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In this study, silver nanoparticle (AgNP) synthesis was carried out using Onosma sericeum Willd. aqueous extract for the first time, with a simple, economical, and green method without the need for any other organic solvent or external reducing or stabilizing agent. A variety of AgNPs, all of different particle sizes, were synthesized by controlling the silver ion concentration, extract volume, temperature, and pH. It was determined that the optimum conditions for AgNP synthesis were 1 mM AgNO3, pH 8, 25 °C, 20 g/200 mL extract, silver nitrate, and extract ratio 5:1 (v/v). The AgNPs were defined using UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The particle size distribution and zeta potential measurements of the AgNPs were measured using the dynamic light scattering (DLS) technique. It was determined that the AgNPs with a particle size of less than 10 nm showed a higher catalytic effect in the reduction of 2-nitrobenzenamine. It was also found that these nanoparticles had a cytotoxic effect on the MCF-7 breast cancer cell line depending on dosage and time. The resulting IC50 values were between 76.63 µg/mL and 169.77 µg/mL. Furthermore, the biosynthesized AgNPs showed effective antibacterial activity against the Acinetobacter baumannii bacteria. The results of the study showed that synthesized AgNPs can have a promising role in biomedical and nanobiotechnology applications.  相似文献   

2.
A new composite cotton fabric with hydrogel containing silver nanoparticles (AgNPs) has been synthesized by two steps, and simultaneous in situ synthesis of AgNPs under visible light irradiation has been performed. The influence of silver nitrate concentration upon the hydrogel and AgNP properties was studied by colorimetric analysis, scanning electron microscopy, and transmission electron microscopy. The antibacterial activities of the composite materials have been investigated against Acinetobacter johnsonii and Escherichia coli in agar medium and meat-peptone broth. The results showed high inhibition activity toward both test cultures which were better expressed against A. johnsonii.  相似文献   

3.
Thin silicate platelets in a dimension of approximately 80 x 80 x 1 nm(3) are isolated for the first time by a newly developed process involving one-step exfoliation of natural montmorillonite clay and toluene/aqueous NaOH extraction. The platelets are observed to be polygon shape by transmission electron microscopy (TEM) and round bent-leaf shape by dynamic force microscopy (DFM). Individual platelets possessing high-aspect-ratio dimension and ionic character are able to self-assemble into microscale fiber bundles after water evaporation. The self-stacking mechanism indicated strong face-to-face ionic charge stacking propensity in triggering a vertical growth. Regularity of fibrous bundles in an average 5 microm length has been observed.  相似文献   

4.
Silver nanoparticles (AgNPs) were synthesised using Kalopanax septemlobus plant leaf extracts. UV-visible spectrophotometric, Fourier-transform infrared, electron dispersive X-ray spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses confirmed synthesis of AgNPs. TEM micrographs revealed presence of well-dispersed AgNPs predominantly of small size and different shapes with an average particle size of 30.8 nm. Antimicrobial susceptibility tests of AgNP treatments revealed variability in sensitivity of bacteria Bacillus cereus and Saccharophagus degradans under study. Minimum inhibitory concentration (MIC) values of the AgNPs for B. cereus and S. degradans were found to be 30 and 10 μg/mL, respectively. The mixed culture of B. cereus and S. degradans treated with AgNPs at 10 μg/mL showed increase in growth with time, suggesting survival of bacteria in liquid media. The plating of mixed culture before AgNP treatment showed presence of both bacteria, but 24-h-old mixed culture treated with AgNPs at the concentration of 10 μg/mL showed presence of B. cereus colonies. SEM micrographs revealed damage to S. degradans cells but no effect on B. cereus cells after AgNP treatment. Confocal microscopic observations of AgNP-treated mixed cultures by Nile blue A staining indicated intact polyhydroxyalkanoates producing flourescent cells of B. cereus but damage and deformities in S. degradans cells. This study suggests that AgNPs can selectively inhibit growth of S. degradans and retain B. cereus at MIC of S. degradans. This report is a case study for selective inhibition of one bacteria and growth of the other in a culture using plant-synthesized silver nanoparticles.  相似文献   

5.
A facile approach for the synthesis of stable aqueous dispersion of silver nanoparticles (AgNPs) using glucose as the reducing agent in water/micelles system, in which cetyltrimethylammonium bromide (CTAB) was used as capping agent (stabilizer) is described. The evolution of plasmon band of AgNPs was monitored under different conditions such as (a) concentration of sodium hydroxide, (b) concentration of glucose, (c) concentration of silver nitrate (d) concentration of CTAB, and (e) reaction time. AgNPs were characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), fluorescence spectroscopy and FT-IR spectroscopy. The results revealed an easy and viable strategy for obtaining stable aqueous dispersion of AgNPs with well controlled shape and size below 30 nm in diameter.  相似文献   

6.
An ecological and viable approach for the in situ forming silver nanoparticles (AgNPs) on cotton fabrics has been used. Silver nanocoated fabric of brownish yellow color (AgNPs, plasmon color) was characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR). SEM images revealed that the surface of the modified cotton was rougher than that of normal cotton. In addition, SEM images showed the presence of AgNPs on the surface of the treated fabric. Silver mapping and elemental analysis of the silver nanocoated cotton fabric using EDS confirmed the presence of AgNPs in a homogeneous distribution. Also, FTIR spectra of silver nanocoated sample showed more intense and broad peaks with a slight red shift if compared with those of blank sample indicating the binding of AgNPs with cellulose macromolecules. Different coating levels and the impact of repeated washings have been evaluated against different microbial strains by growth inhibition zone. The results of antimicrobial studies reveal that the presence of a low coating level of nanosilver is enough for producing an excellent and durable antimicrobial cotton fabrics.  相似文献   

7.
The development of antibiotic resistance in pathogenic bacterial strains has drawn attention to the quest for new natural antibacterial drugs. Therefore, in the present study, extracts of Rumex hastatus leaves were obtained in methanol and water, and R. hastatus-based silver nanoparticles (AgNPs) were synthesized. Structural and functional properties of synthesized silver nanoparticles were determined by UV–vis spectroscopy, XRD, FTIR and SEM. The synthesized AgNPs and crude extracts were tested to check their antibacterial potential against human pathogenic bacterial strains of Staphylococcus aureus, Staphylococcus haemoliticus, Bacillus cereus, Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa in well diffusion and broth dilution methods. The present investigation has revealed for the first time that the broth dilution method was found more reproducible than that of the well diffusion method even at lower concentrations of AgNPs and crude extracts. UV– Vis spectroscopic analysis of AgNPs revealed a peak at 367 nm. XRD pattern showed a face-centered cubical to the spherical structure of AgNP crystals. FTIR analysis revealed that flavonoids and terpenoids are responsible for the reduction of AgNO3 to Ag+. SEM analysis determined the spherical structure and 51 nm average diameter of nanoparticles. The antibacterial activity of R. hastatus-based (AgNPs) was found to be significantly higher than aqueous plant extract and silver nitrate alone. Bacterial growth was inhibited by R. hastatus-based AgNPs in a dose-dependent manner. To our knowledge, silver nanoparticles (AgNPs) of R. hastatus were synthesized and characterized for the first time in this study and, based on the findings of current research work R. hastatus extract-based silver nanoparticles are suggested to be used as an antibacterial drug instead of synthetic drugs for the treatment of various human diseases/infections caused by the tested bacterial strains.  相似文献   

8.
Mica supported Pd nanocatalysts were prepared by a two-step approach, in which SnCl(2) was first grafted onto mica via its reaction with hydroxyl groups on mica, followed by the in situ reduction of Pd(2+) by Sn(2+) on the surface of mica. The as-prepared Pd-Sn/mica catalysts were characterized by different techniques including transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and ICP analysis. The loaded Pd particles existed in the form of Pd(0) confirmed by XPS analysis, and distributed uniformly on mica with average size about 2.6 nm, as confirmed by TEM examination. The activities of the resultant catalysts for Heck reactions of iodobenzene and its derivatives with olefins and selective hydrogenation of citral were investigated. It was demonstrated that the as-prepared catalysts exhibited very high efficiency for these reactions.  相似文献   

9.
The green synthesis of silver nanoparticles (AgNPs) has been proposed as a simple, eco-friendly and cost effective alternative to chemical and physical methods. The Rhus chinensis plant is one of the well studied medicinal plant and its galls find excellent clinical and therapeutic applications. The present study reports the use of water extract from galls of R. chinensis as a reducing agent and formation of AgNPs from silver nitrate solution by a green synthesis route. The AgNPs formation was observed visually by color change and the absorbance peak at 450 nm was observed by UV–Visible spectrophotometer. The shape, size, and morphology of synthesized AgNPs were monitored by transmission electron microscopy and field-emission scanning electron microscopy. The face centered cubic structure of AgNPs was confirmed by X-ray diffraction pattern and element composition by energy dispersive X-ray analysis. The Fourier transform infrared spectroscopy spectrum revealed that the presence of components acts as a reducing and capping agent. The antibacterial activity was performed using the agar well diffusion method. Minimum inhibitory concentration and minimum bactericidal concentration were determined by broth dilution and spread plate method respectively. Synthesized nanoparticles were spotted as triangular and hexagonal shape and the particle size was around 150 nm.  相似文献   

10.
In the present work, silver nanoparticles (AgNPs) were in situ generated in cellulose matrix using leaf extract of Azadirachta indica as a reducing agent. The cellulose/AgNP composite films prepared were characterized by FTIR, X-ray diffraction (XRD), scanning electron microscope, and antibacterial tests. The infrared spectra indicated the association of organic materials with silver nanoparticles to serve as capping agents. Scanning electron micrographs showed that synthesized silver nanoparticles were nearly uniform and spherical in shape with diameter in the range of 61–110?nm. XRD confirmed the formation of AgNPs and Ag–O nanoparticles. The nanocomposite films showed good antibacterial activity against Escherichia coli bacteria.  相似文献   

11.
A versatile green and nontoxic begin method for bio-reduction of silver nanoparticles (AgNPs) using latex extract of Ipomea carnea was reported. Different instrumental tools were applied to evaluate the formation of AgNPs, as an example UV–Visible spectroscopy (UV–Vis), Fourier transform infra-red (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HR-TEM). The absorption peak of AgNPs obtained at around 413 nm. FTIR study confirmed that the bio-capping components present in latex extract served as reducing and stabilizing agent. The findings of XRD, SEM and HR-TEM images revealed that the formation of crystalline and spherical shape nanoparticles and showed well size distribution with mean size 9.8±0.27 nm. Additionally, the green fabricated AgNPs exhibited considerable zone of inhibition for both Gram-positive and Gram–negative bacteria. The outcome implies that the synthesized AgNPs also showed similar inhibition effect as streptomycin (a common reference antibiotic).  相似文献   

12.
Antibiotic resistance rate is rising worldwide. Silver nanoparticles (AgNPs) are potent for fighting antimicrobial resistance (AMR), independently or synergistically. The purpose of this study was to prepare AgNPs using wild ginger extracts and to evaluate the antibacterial efficacy of these AgNPs against multidrug-resistant (MDR) Staphylococcus aureus, Streptococcus mutans, and Enterococcus faecalis. AgNPs were synthesized using wild ginger extracts at room temperature through different parameters for optimization, i.e., pH and variable molar concentration. Synthesis of AgNPs was confirmed by UV/visible spectroscopy and further characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy analysis (EDXA), and Fourier-transform infrared spectroscopy (FTIR). Disc and agar well diffusion techniques were utilized to determine the in vitro antibacterial activity of plant extracts and AgNPs. The surface plasmon resonance peaks in absorption spectra for silver suspension showed the absorption maxima in the range of 400–420 nm. Functional biomolecules such as N–H, C–H, O–H, C–O, and C–O–C were present in Zingiber zerumbet (Z. zerumbet) (aqueous and organic extracts) responsible for the AgNP formation characterized by FTIR. The crystalline structure of ZZAE-AgCl-NPs and ZZEE-AgCl-NPs was displayed in the XRD analysis. SEM analysis revealed the surface morphology. The EDXA analysis also confirmed the element of silver. It was revealed that AgNPs were seemingly spherical in morphology. The biosynthesized AgNPs exhibited complete antibacterial activity against the tested MDR bacterial strains. This study indicates that AgNPs of wild ginger extracts exhibit potent antibacterial activity against MDR bacterial strains.  相似文献   

13.
A method of analysis of silver nanoparticles (AgNPs) in chicken meat was developed. The homogenized chicken meat sample, which was spiked with AgNPs, was subjected to enzymolysis by Proteinase K for 40 min at 37 °C. Transmission electron microscopy and inductively coupled plasma mass spectrometry (ICP-MS) in single particle mode were used to characterize the number-based size distribution of AgNPs in the meat digestate. Because similar size distributions were found in the meat digestate and in the aqueous suspension of AgNPs used for spiking the meat, it was shown that no detectable dissolution of the AgNPs took place during the sample preparation stage. The digestate was injected into the asymmetric flow field flow fractionation (AF4) -ICP-MS system, which enabled fractionation of nanoparticles from the remaining meat matrix, and resulted in one large peak in the fractograms as well as two smaller peaks eluting close to the void volume. The recovery of silver contained in the large AgNP peak was around 80 %. Size determination of AgNPs in the meat matrix, based on external size calibration of the AF4 channel, was hampered by non-ideal (early elution) behavior of the AgNPs. Single particle ICP-MS was applied for determination of the number-based particle size distribution of AgNPs in collected fractions. The presented work describes for the first time the coupling of AF4 and ICP-MS for AgNP separation in a food matrix.  相似文献   

14.
Distinguishing the toxic effects of nanoparticles (NPs) themselves from the well-studied toxic effects of their ions is a critical but challenging measurement for nanotoxicity studies and regulation. This measurement is especially difficult for silver NPs (AgNPs) because in many relevant biological and environmental solutions, dissolved silver forms AgCl NPs or microparticles. Simulations predict that solid AgCl particles form at silver concentrations greater than 0.18 and 0.58 μg/mL in cell culture media and moderately hard reconstituted water (MHRW), respectively. The AgCl NPs are usually not easily separable from AgNPs. Therefore, common existing total silver techniques applied to measure AgNP dissolution, such as inductively coupled plasma mass spectrometry (ICP-MS) or atomic absorption, cannot accurately measure the amount of silver remaining in AgNP form, as they cannot distinguish Ag oxidation states. In this work, we introduce a simple localized surface plasmon resonance (LSPR) UV–visible absorbance measurement as a technique to measure the amount of silver remaining in AgNP form for AgNPs with constant agglomeration states. Unlike other existing methods, this absorbance method can be used to measure the amount of silver remaining in AgNP form even in biological and environmental solutions containing chloride because AgCl NPs do not have an associated LSPR absorbance. In addition, no separation step is required to measure the dissolution of the AgNPs. After using ICP-MS to show that the area under the absorbance curve is an accurate measure of silver in AgNP state for unagglomerating AgNPs in non-chloride-containing media, the absorbance is used to measure dissolution rates of AgNPs with different polymer coatings in biological and environmental solutions. We find that the dissolution rate decreases at high AgNP concentrations, 5 kDa polyethylene glycol thiol coatings increase the dissolution rate, and the rate is much higher in cell culture media than in MHRW.  相似文献   

15.
This work presented a general way for in situ formation of citrate-capped silver nanoparticle (AgNP) aggregates as labels on an electrode surface. When the electrode surface was functionalised with a member of the o-diphenol family, 4-mercaptophenylboronic acid (MPBA) was anchored onto the electrode surface via a boronate ester covalent bond. The anchored MPBA captured AgNPs through AgS interaction. The resulting surface-tethered AgNPs could recruit more MPBA molecules and AgNPs through the formation of an AgS bond and the covalent interaction between the α-hydroxycarboxylate of the citrate and the boronate of the MPBA. This led to in situ formation of a network of AgNPs. The complexes formed between MBPA and citrate acid, as well as dopamine (a member of the o-diphenol family), were characterized by mass spectrometry. The MBPA-induced aggregation of citrate-capped AgNPs in solution was confirmed by UV–Vis spectrophotometry and transmission electron microscopy. The network of AgNPs formed on the diphenol-covered electrode surface was characterized by scanning electron microscopy. The electrochemical signal was measured based on the solid-state Ag/AgCl reaction of the AgNPs. To demonstrate the applications and analytical merits of our design, tyrosinase and protease (thrombin) were measured as model analytes. The proposed strategy is likely to lead to the development of sensors for the detection of other biomolecules.  相似文献   

16.
A simple competitive strategy was designed for the sensitive detection of sequence‐specific DNA by combining endonuclease‐assisted target recycling and electrochemical stripping analysis of silver nanoparticles (AgNPs). The AgNP‐tagged carbon nanospheres were synthesized by means of in situ reduction of Ag+ adsorbed onto a negatively charged polyelectrolyte layer and functionalized with streptavidin for binding biotin‐labeled DNA strands. The labeled strand was captured on the DNA sensor surface by competitive hybridization of biotinated primer 1 and its cleaved product. The cleaved product could be amplified in homogeneous solution by endonuclease‐assisted target recycling with a Y‐shaped junction DNA structure, thus leading to the correlation of the stripping signal to the target concentration. The functionalized nanosphere was characterized with X‐ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The proposed method showed a linear range from 0.1 to 1000 fM with a limit of detection of 0.066 fM (3σ) and good selectivity for base discrimination. The designed strategy provided a sensitive tool for DNA analysis and could be widely applied in bioanalysis and biomedicine.  相似文献   

17.
Layered nickel silicate nanoflowers (NSFs) with a hierarchical nanostructure have been successfully fabricated by a template‐free solvothermal method. The as‐prepared nanoflowers were composed of many interconnected edge‐curving lamellae with a thickness of about 15 nm and had a high specific surface area (279 m2 g?1) and large pore volume (0.67 cm3 g?1). The highly dispersed small silver nanoparticles (AgNPs) were immobilized on the surface of NSFs through the in situ reduction of Ag+ by Sn2+. The AgNP/NSF nanocomposites showed a high performance in the catalytic reduction of 4‐nitrophenol. In particular, there was no visible decrease in the catalytic activity of the reused catalysts even after being recycled four times. The as‐prepared AgNP/NSF nanocomposites might be an excellent catalyst owing to their availability, formability, chemical and thermal stability, and high specific surface area.  相似文献   

18.
In this article, capillary columns constituted by lauryl methacrylate monoliths with embedded silver nanoparticles (AgNPs) were developed and tested. Two incorporation approaches of AgNPs in monoliths were explored. The AgNPs were either photogenerated in situ during polymerization of the monolith by UV irradiation, or incorporated to the polymerization mixture (ex situ). The influence of the AgNP concentration on the morphological and chromatographic properties of the polymer matrix was investigated, and both the in situ and ex situ approaches were comparatively discussed. The morphology of the monoliths was characterized by electron microscopic techniques, and their electrochromatographic performance was also evaluated with test mixtures of neutral compounds (sterols, fatty acid methyl esters, tocopherols, and polyaromatic hydrocarbons).  相似文献   

19.
A stable silver nanoparticle suspension was synthesized via the reduction of silver nitrate using sodium borohydride and sodium citrate. The particle's shape and size distribution were measured by various methods. The electrophoretic mobility measurements revealed that the zeta potential of particles was highly negative, increasing slightly with the ionic strength, from -52 mV for I=10(-5) M to -35 mV for I=3×10(-2) M (for pH=5.5). The zeta potential of mica modified by the adsorption of cationic polyelectrolytes: PEI and PAH was also determined using the streaming potential measurements. The modified mica sheets were used as substrates for particle monolayers formed via colloid self assembly. The kinetics of this process, proceeding under diffusion-controlled transport conditions, was quantitatively evaluated by a direct enumeration of particles using the AFM and SEM techniques. Both the kinetics of particle deposition and the maximum surface concentration were determined. From the slope of the initial deposition rates, the equivalent diameter of particles was determined to be 16 nm, in agreement with previous measurements. Based on this finding, an efficient method of determining particle size in suspension was proposed. It was also demonstrated that for higher ionic strengths, the maximum coverage of particle monolayers on PAH modified mica exceeded 0.39. The kinetic data were quantitatively interpreted in terms of the random sequential adsorption (RSA) model using the effective hard particle concept.  相似文献   

20.
The effect of silver nanoparticles (AgNPs) of diameters 6 and 100 nm on a discotic liquid crystalline material, namely 2,3,6,7,10,11-hexabutyloxytriphenylene (in short HAT4), has been observed in thermodynamic, electrical and optical texture studies. Silver nanoparticles (0.6 wt%) of diameter ~6 nm demonstrate a negligible (but ~100 nm shows appreciable) effect on the broad temperature range plastic columnar hexagonal (Colhex) phase (~65.0°C) of pure HAT4. The dielectric studies have been carried out in the frequency range of 10 Hz–35 MHz under homeotropic anchoring conditions of the molecules. In the low frequency region of pure HAT4 and its AgNP composites, a relaxation mode has been observed. AgNPs of 6 nm elevate the value of dielectric permittivity of the plastic columnar hexagonal phase of pure HAT4. The dc conductivity of pure HAT4 and its AgNP composite (6 and 100 nm) material has been determined. The optical band gap for pure and AgNP composites of HAT4 has been determined by the ultraviolet-visible study. Due to insertion of AgNPs, the optical band gap of HAT4 has reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号