首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chen Y  Xie MY  Yan Y  Zhu SB  Nie SP  Li C  Wang YX  Gong XF 《Analytica chimica acta》2008,618(2):121-130
A rapid and nondestructive near infrared (NIR) method combined with chemometrics was used to discriminate Ganoderma lucidum according to cultivation area. Raw, first, and second derivative NIR spectra were compared to develop a robust classification rule. The chemical properties of G. lucidum samples were also investigated to find out the difference between samples from six varied origins. It could be found that the amount of polysaccharides and triterpenoid saponins in G. lucidum samples was considerably different based on cultivation area. These differences make NIR spectroscopic method viable. Principal component analysis (PCA), discriminant partial least-squares (DPLS) and discriminant analysis (DA) were applied to classify the geographical origins of those samples. The results showed that excellent classification could be obtained after optimizing spectral pre-treatment. For the discriminating of samples from three different provinces, DPLS provided 100% correct classifications. Moreover, for samples from six different locations, the correct classifications of the calibration as well as the validation data set were 96.6% using the DA method after the SNV first derivative spectral pre-treatment. Overall, NIR diffuse reflectance spectroscopy using pattern recognition was shown to have significant potential as a rapid and accurate method for the identification of herbal medicines.  相似文献   

2.
A rapid near infrared spectroscopy analysis method was developed for the geographical origin discrimination and content determination of Radix scutellariae, a kind of Traditional Chinese Medicine (TCM). 81 R. scutellariae samples from six different origins were analyzed with HPLC-UV as reference method. The NIR spectra were collected in integrating-sphere diffused reflection mode and processed with different spectra pretreated methods. Discriminant analysis (DA) and discriminant partial least squares (DPLS) were applied to classify the geographical origins of those samples, and the latter had a better predictive ability with 100% accuracy after two exceptional samples eliminated from the calibration set. For the quantitative calibration, the samples were divided into calibration set and validation set by Kennard-Stone algorithm. The models of baicalin, wogonoside, baicalein, wogonin were established with partial least squares (PLS) algorithm and the optimal principal component (PC) numbers were selected with Leave-One-Out (LOO) cross-validation. The established models were evaluated with the root mean square error of prediction (RMSEP) and corresponding correlation coefficients. The correlation coefficients of all the four calibration models are above 0.920, and the RMSEPs of baicalin, wogonoside, baicalein and wogonin are 0.752%, 0.094%, 0.418% and 0.139%, respectively. This research indicated that the NIR diffuse reflection spectroscopy could be used for the rapid analysis of R. scutellariae, which is beneficial to the quality control of this raw material in TCM pharmaceutical factory, and will also help to solve analogous problems.  相似文献   

3.
建立了一种基于近红外光谱分析技术的香菇产地鉴别方法。利用近红外光谱仪扫描不同主产地的香菇干样,获得样品的近红外漫反射光谱。利用偏最小二乘判别分析(PLSDA)分别建立了吉林、湖北、福建3个省份栽培香菇的产地判别模型,同时使用光谱预处理和波长筛选技术对判别模型进行优化,最后使用预测样品对模型进行验证。结果表明,使用原始光谱建立的模型能够初步实现对产地的判别,使用光谱预处理技术扣除光谱中的背景信息,同时利用波长筛选技术选择特定波长对模型进行优化后,可进一步提高预测正确率。该方法为香菇产地真实性溯源提供了一种新方法,对香菇产业发展具有重要的实际意义。  相似文献   

4.
The authenticity of essential oils has become an important issue in supplying essential oil raw materials for the pharmaceutical, perfume, and cosmetic industries. Citronella oil is one of the essential oils used in those industries. Cymbopogon nardus is one of the lemongrass species that can produce citronella oil. However, with the high price of citronella oil from C. nardus, there is a possibility of being substituted or adulterated with closely related plants, namely Cymbopogon citratus. This paper described the feasibility of near-infrared (NIR) spectroscopy combined with chemometrics analysis for rapid identification and authentication of C. nardus from C. citratus essential oil. NIR spectra of both essential oils and their mixture (10 % and 25 % v/v of C. citratus in C. nardus) showed a similar spectral profile, so we cannot easily discriminate them and need help from chemometrics analysis. For chemometrics analysis, we used absorbance data from the preprocessed NIR spectra at wavenumbers 4000–6500 cm?1. Using PCA, we could separate each essential oil from C. nardus and C. citratus but cannot discriminate between 10 % and 25 % of CC in CN. While using OPLS-DA with R2X(cum) = 0.88, R2Y(cum) = 0.859 and Q2(cum) = 0.723, we could group each sample. The OPLS-DA score plot clearly shows the difference between C. nardus and C. citratus essential oils and their mixtures. The combination of NIR and OPLS-DA could provide a suitable method for identifying and authenticating C. nardus from C. citratus essential oil.  相似文献   

5.
Near infrared (NIR) spectroscopy based on effective wavelengths (EWs) and chemometrics was proposed to discriminate the varieties of fruit vinegars including aloe, apple, lemon and peach vinegars. One hundred eighty samples (45 for each variety) were selected randomly for the calibration set, and 60 samples (15 for each variety) for the validation set, whereas 24 samples (6 for each variety) for the independent set. Partial least squares discriminant analysis (PLS-DA) and least squares-support vector machine (LS-SVM) were implemented for calibration models. Different input data matrices of LS-SVM were determined by latent variables (LVs) selected by explained variance, and EWs selected by x-loading weights, regression coefficients, modeling power and independent component analysis (ICA). Then the LS-SVM models were developed with a grid search technique and RBF kernel function. All LS-SVM models outperformed PLS-DA model, and the optimal LS-SVM model was achieved with EWs (4021, 4058, 4264, 4400, 4853, 5070 and 5273 cm−1) selected by regression coefficients. The determination coefficient (R2), RMSEP and total recognition ratio with cutoff value ±0.1 in validation set were 1.000, 0.025 and 100%, respectively. The overall results indicted that the regression coefficients was an effective way for the selection of effective wavelengths. NIR spectroscopy combined with LS-SVM models had the capability to discriminate the varieties of fruit vinegars with high accuracy.  相似文献   

6.
A reversed-phase high-performance liquid chromatographic method coupled with photodiode-array detection (HPLC–PAD) has been developed and validated for simultaneous quantitation of dl-tetrahydropalmatine (dl-THP) and protopine (PTP), two active constituents of the herbal medicine Rhizoma Corydalis, in rabbit plasma. The pharmacokinetics of dl-THP and PTP were researched in rabbits after oral administration of extracts of Rhizoma Corydalis. Optimum separation was achieved on a reversed-phase column with methanol–phosphate buffer (pH 7.75, 65:35, v/v) as mobile phase. The experimental results showed the intra-day and inter-day precision and accuracy of the method were satisfactory for simultaneous determination of dl-THP and PTP at low, middle, and high concentrations. The lower limits of quantitation were 2.05 ng mL?1 for dl-THP and 2.10 ng mL?1 for PTP. Plasma concentration–time data for dl-THP were best fitted by the two-compartment linear pharmacokinetic model whereas data for PTP were best fitted by the one-compartment model.  相似文献   

7.
Authentication of traditional Chinese medicines (TCMs) has become important because they can be adulterated with relatively cheap herbal medicines similar in appearance. Detection of such adulterated samples is needed because their presence is likely to reduce the pharmacological potency of the original TCM and, in the worst cases, the samples may be harmful. The aim of this study was to develop a rapid near-infrared spectroscopy (NIRS) analytical method which was supported by multi-variate calibration, e.g. partial least squares regression (PLSR) and radial basis function artificial neural networks (RBF-ANN), in order to quantify the TCM and the adulterants. In this work, Cynanchum stauntonii (CS), a commonly used TCM, in mixtures with one or two adulterants ?? two morphological types of TCM, Cynanchum atrati (CA) and Cynanchum paniculati (CP), were determined using NIR reflectance spectroscopy. The three sample sets, CS adulterated with CA or CP, and CS with both CA and CP, were measured in the range of 800?C2500 nm. Both PLSR and RBF-ANN calibration models provided satisfactory results, even at an adulteration level of 5 mass %, but the RBF-ANN models with better root mean square error of prediction (RMSEP) values for CS, CA, and CP arguably performed better. Consequently, this work demonstrates that the NIR method of sampling complex mixtures of similar substances such as CS adulterated by CA and/or CP is capable of producing data suitable for the quantitative analysis of mixtures consisting of the original TCM adulterated by one or two similar substances, provided the spectral data are interrogated by multi-variate methods of data analysis such as PLS or RBF-ANN.  相似文献   

8.
Many complex natural or synthetic products are analysed either by the GC–MS (gas chromatography–mass spectrometry) or HPLC–DAD (high performance liquid chromatography–diode-array detector) technique, each of which produces a one-dimensional fingerprint for a given sample. This may be used for classification of different batches of a product. GC–MS and HPLC–DAD analyses of complex, similar substances represented by the three common types of the TCM (traditional Chinese medicine), Rhizoma Curcumae were analysed in the form of one- and two-dimensional matrices firstly with the use of PCA (Principal component analysis), which showed a reasonable separation of the samples for each technique. However, the separation patterns were rather different for each analytical method, and PCA of the combined data matrix showed improved discrimination of the three types of object; close associations between the GC–MS and HPLC–DAD variables were observed. LDA (linear discriminant analysis), BP-ANN (back propagation-artificial neural networks) and LS-SVM (least squares-support vector machine) chemometrics methods were then applied to classify the training and prediction sets. For one-dimensional matrices, all training models indicated that several samples would be misclassified; the same was observed for each prediction set. However, by comparison, in the analysis of the combined matrix, all models gave 100% classification with the training set, and the LS-SVM calibration also produced a 100% result for prediction, with the BP-ANN calibration closely behind. This has important implications for comparing complex substances such as the TCMs because clearly the one-dimensional data matrices alone produce inferior results for training and prediction as compared to the combined data matrix models. Thus, product samples may be misclassified with the use of the one-dimensional data because of insufficient information.  相似文献   

9.
《Analytica chimica acta》2004,514(1):57-67
Two orthogonal signal correction methods (OSC and DOSC) were applied on a set of 83 roasted coffee NIR spectra from varied origins and varieties in order to remove information unrelated to a specific chemical response (caffeine), which was selected due to its high discriminant ability to differentiate between arabica and robusta coffee varieties. These corrected NIR spectra, as well as raw NIR spectra and three chemical quantities (caffeine, chlorogenic acids and total acidity), were used to develop separate classification models accordingly using the potential functions method as a class-modelling technique in order to evaluate their respective capacities to discriminate between coffee varieties and the influence of these pre-processing methods on the classification of the coffee samples into their corresponding variety class. The transformation of roasted coffee NIR spectra by means of an orthogonal signal correction method, taking into account in this correction a chemical response closely related to the sample origin, prompted a notable improvement in the specificity of the constructed classification models.  相似文献   

10.
Near-infrared (NIR) spectroscopy, in combination with chemometrics, enable the analysis of raw materials without time-consuming sample preparation methods. The aim of our work was to estimate critical parameters in the analytical specification of oxytetracycline, and consequently the development of a method for quantification and qualification of these parameters by NIR spectroscopy. A Karl Fischer (K.F.) titration to determine the water content, a colorimetric assay method, and Fourier transform-infrared (FT-IR) spectroscopy to identify the oxytetracycline base, were used as reference methods, respectively. Multivariate calibration was performed on NIR spectral data using principal component analysis (PCA), partial least-squares (PLS 1) and principal component regression (PCR) chemometric methods. Multivariate calibration models for NIR spectroscopy have been developed. Using PCA and the Soft Independent Modelling of Class Analogy (SIMCA) approach, we established the cluster model for the determination of sample identity. PLS 1 and PCR regression methods were applied to develop the calibration models for the determination of water content and the assay of the oxytetracycline base. Comparing the PLS and PCR regression methods we found out that the PLS is better established by NIR, especially as the spectroscopic data (NIR spectra) are highly collinear and there are many wavelengths due to non-selective wavelengths. The calibration models for NIR spectroscopy are convenient alternatives to the colorimetric method and to the K.F. method, as well as to FT-IR spectroscopy, in the routine control of incoming material.  相似文献   

11.
A new analytical strategy based on mass spectrometry fingerprinting combined with the NIST-MS search program for pattern recognition is evaluated and validated. A case study dealing with the tracing of the geographical origin of virgin olive oils (VOOs) proves the capabilities of mass spectrometry fingerprinting coupled with NIST-MS search program for classification. The volatile profiles of 220 VOOs from Liguria and other Mediterranean regions were analysed by secondary electrospray ionization-mass spectrometry (SESI-MS). MS spectra of VOOs were classified according to their origin by the freeware NIST-MS search v 2.0. The NIST classification results were compared to well-known pattern recognition techniques, such as linear discriminant analysis (LDA), partial least-squares discriminant analysis (PLS-DA), k-nearest neighbours (kNN), and counter-propagation artificial neural networks (CP-ANN). The NIST-MS search program predicted correctly 96% of the Ligurian VOOs and 92% of the non-Ligurian ones of an external independent data set; outperforming the traditional chemometric techniques (prediction abilities in the external validation achieved by kNN were 88% and 84% for the Ligurian and non-Ligurian categories respectively). This proves that the NIST-MS search software is a useful classification tool.  相似文献   

12.
Temperature-dependent near-infrared (NIR) spectroscopy has been developed and taken as a powerful technique for analyzing the structure of water and the interactions in aqueous systems. Due to the overlapping of the peaks in NIR spectra, it is difficult to obtain the spectral features showing the structures and interactions. Chemometrics, therefore, is adopted to improve the spectral resolution and extract spectral information from the temperature-dependent NIR spectra for structural and quantitative analysis. In this review, works on chemometric studies for analyzing temperature-dependent NIR spectra were summarized. The temperature-induced spectral features of water structures can be extracted from the spectra with the help of chemometrics. Using the spectral variation of water with the temperature, the structural changes of small molecules, proteins, thermo-responsive polymers, and their interactions with water in aqueous solutions can be demonstrated. Furthermore, quantitative models between the spectra and the temperature or concentration can be established using the spectral variations of water and applied to determine the compositions in aqueous mixtures.  相似文献   

13.
《Analytical letters》2012,45(13):1810-1823
Chromatographic profiles of Rhizoma et Radix Notoperygii (RRN, “Qianghuo” in Chinese), a complex traditional Chinese medicine (TCM), were collected by high-performance liquid chromatography with diode array detection (HPLC-DAD) at 330 nm. These data profiles were used as fingerprints to investigate quality control classification modeling of the RRN samples. In contrast to the classical methods for discrimination of TCMs, that is, just using common HPLC peaks, all chromatographic profile data were pre-processed by the correlation optimized warping method and polynomial functions; then, these data were submitted as fingerprints (variables) for classification on the basis of sample origin. Chemometrics methods used for calibration modeling and subsequent sample classification-least square support vector machine (LS-SVM), artificial neural network (ANN), and partial least square discriminant analysis (PLS-DA); all produced satisfactory calibrations as well as classification results.  相似文献   

14.
The goal of this study was to explore the potential of near-infrared (NIR) hyperspectral imaging in combination with multivariate analysis for the prediction of some quality attributes of lamb meat. In this study, samples from three different muscles (semitendinosus (ST), semimembranosus (SM), longissimus dorsi (LD)) originated from Texel, Suffolk, Scottish Blackface and Charollais breeds were collected and used for image acquisition and quality measurements. Hyperspectral images were acquired using a pushbroom NIR hyperspectral imaging system in the spectral range of 900–1700 nm. A partial least-squares (PLS) regression, as a multivariate calibration method, was used to correlate the NIR reflectance spectra with quality values of the tested muscles. The models performed well for predicting pH, colour and drip loss with the coefficient of determination (R2) of 0.65, 0.91 and 0.77, respectively. Image processing algorithm was also developed to transfer the predictive model in every pixel to generate prediction maps that visualize the spatial distribution of quality parameter in the imaged lamb samples. In addition, textural analysis based on gray level co-occurrence matrix (GLCM) was also conducted to determine the correlation between textural features and drip loss. The results clearly indicated that NIR hyperspectral imaging technique has the potential as a fast and non-invasive method for predicting quality attributes of lamb meat.  相似文献   

15.
Rapid and sensitive recognition of herbal pieces according to different concocted processing is crucial to quality control and pharmaceutical effect.Near-infrared(NIR) and mid-infrared(MIR) technology combined with supervised pattern recognition based on partial least-squares discriminant analysis (PLSDA) was attempted to classify and recognize six different concocted processing pieces of 600 Areca catechu L.samples and the influence of fingerprint information preprocessing methods on recognition performance was also investigated in this work.Recognition rates of 99.24%,100%and 99.49%for original fingerprint,multiple scatter correct(MSC) fingerprint and second derivative(2nd derivative) fingerprint of NIR spectra were achieved by PLSDA models,respectively.Meanwhile,a perfect recognition rate of 100%was obtained for the above three fingerprint models of MIR spectra.In conclusion.PLSDA can rapidly and effectively extract otherness of fingerprint information from NIR and MIR spectra to identify different concocted herbal pieces of A.catechu.  相似文献   

16.
Deng C  Yang X  Zhang X 《Talanta》2005,68(1):6-11
Panaxynol is a bioactive component in traditional Chinese medicines (TCMs), such as Saposhnikovia divaricata and Panax ginseng. In the work, two solvent-free sample techniques of pressurized hot water extraction (PHWE) and headspace liquid-phase microextraction (HS-LPME) were combined and developed for the determination of panaxynol in a TCM of S. divaricata. Panaxynol in the TCM samples from different growing areas was extracted by PHWE in dynamic mode, followed by extraction and concentration with HS-LPME and analysis with gas chromatography-mass spectrometry (GC-MS). The PHWE and HS-LPME parameters were optimized and the method validations were studied. Panaxynol in S. divaricata from four different growing areas was quantitatively analyzed by internal standard method. These results have shown that PHWE-LPME-GC-MS is a simple, rapid, efficient and low-cost method for the determination of panaxynol in TCMs and is a potential tool for TCM quality assessment.  相似文献   

17.
近红外光谱技术结合主成分分析法用于子宫内膜癌的诊断   总被引:3,自引:0,他引:3  
应用近红外光谱技术结合化学计量学方法研究了子宫内膜癌组织近红外光谱特征提取和早期诊断的可行性. 测定了154 例子宫内膜组织切片的近红外光谱, 选取适宜的波段和光谱预处理方法进行主成分分析, 很好地区分了癌变、增生和正常子宫内膜组织切片, 并且分辨出处于不同分化期的组织切片, 为子宫内膜癌的早期诊断提供了可靠依据. 该法快速、简便, 有望发展成为一种新型的肿瘤无创诊断方法.  相似文献   

18.
Pre-processing of near-infrared (NIR) spectral data has become a necessary part of chemometrics modeling and is widely used in many practical applications. The objective of the pre-processing is to remove physical phenomena in the spectra in order to improve subsequent qualitative or quantitative analysis. Herein, a localized version of standard normal variate (SNV) is proposed, in which the correction parameters are estimated from local spectral areas. The method of determining the optimal spectral segmentation is also presented. Compared with full range methods, the local method demonstrates advantages in spectral linearity correction, model interpretation and prediction accuracy. Several benchmark NIR data sets were studied in our experiments; the proposed method achieved comparable performance against proven full range methods, with the reduction of prediction errors being statistically significant in many cases.  相似文献   

19.
In this study, direct ionization mass spectrometry (DI-MS) for rapid authentication of Gastrodiae rhizoma (known as Tianma in Chinese), a popular herbal medicine, has been developed. This method is rapid, simple and allows direct generation of characteristic mass spectra from the raw herbal medicines with the application of some solvents and a high voltage. The acquired DI-MS spectra showed that gastrodin, parishin B/parishin C and parishin, the major active components of Gastrodiae rhizoma, could be found only in genuine Gastrodiae rhizoma samples, but not in counterfeit samples, thus allowing rapid authentication of Gastrodiae rhizoma. Moreover, wild and cultivated Gastrodiae rhizoma could be classified and Gastrodiae rhizoma from different geographical locations could be differentiated based on their different intensity ratios of characteristic ions or principal component analysis (PCA). This method is simple, rapid, reproducible, and can be extended to analyze other herbal medicines.  相似文献   

20.

Purity is one of the essential properties of biodiesel. Since the purity parameter depends on different operating conditions, its direct measurement is too hard and can only be obtained for specific ranges of conditions. Therefore, this work considers the least-squares support vector machines (LS-SVMs) that transform operating conditions to a multi-dimensional space to simulate biodiesel purity in wide ranges of operating conditions. Indeed, we develop a reliable LS-SVM approach for modeling the biodiesel purity as a function of catalyst type and its concentration, reaction time, temperature, methanol-to-oil volume ratio, frequency, and amplitude of ultrasonic waves. The designed LS-SVM’s predictive performance is compared with four available artificial intelligence (AI) techniques in reliable literature. The obtained results confirm that the LS-SVM paradigm outperforms other considered AI-based techniques regarding five different statistical criteria. Our LS-SVM model provides AARD?=?2.2%, RMSE?=?3.46, and R2?=?0.9868 for the prediction of 267 experimental data points, which includes 267 data points. This model is finally employed for investigating the effect of different influential variables on biodiesel purity.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号